Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 110914 (La Superba)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Atomic hydrogen in asymptotic giant branch circumstellar environments. A case study: X Her
We report the detection of the HI line at 21 cm from the circumstellarshell around the asymptotic giant branch star X Her using theposition-switching technique with the Nançay Radio Telescope. Atthe star position, the line shows two components: (i) a broad one [fullwidth at half-maximum (FWHM) ~ 13 kms-1] centred at -72.2kms-1 and (ii) a narrow one (FWHM ~ 4 kms-1)centred at ~-70.6kms -1. Our map shows that the sourceassociated to the broad component is asymmetric with material flowingpreferentially towards the north-east. This source extends to ~10 arcmin(~0.4pc) from the star in that direction. On the other hand, the narrowcomponent is detected only at the star position and indicates materialflowing away from the observer. The total mass of atomic hydrogen is~6.5 × 10-3Msolar which, within a factor of2, agrees with the estimate obtained from IRAS data at 60 μm.

Multi-aperture photometry of extended IR sources with ISOPHOT. I. The nature of extended IR emission of planetary Nebulae
Context: .ISOPHOT multi-aperture photometry is an efficient method toresolve compact sources or to detect extended emission down torelatively faint levels with single detectors in the wavelength range 3to 100 μm. Aims: .Using ISOPHOT multi-aperture photometry andcomplementary ISO spectra and IR spectral energy distributions wediscuss the nature of the extended IR emission of the two PNe NGC 6543and NGC 7008. Methods: .In the on-line appendix we describe thedata reduction, calibration and interpretation methods based on asimultaneous determination of the IR source and background contributionsfrom the on-source multi-aperture sequences. Normalized profiles enabledirect comparison with point source and flat-sky references. Modellingthe intensity distribution offers a quantitative method to assess sourceextent and angular scales of the main structures and is helpful inreconstructing the total source flux, if the source extends beyond aradius of 1 arcmin. The photometric calibration is described and typicalaccuracies are derived. General uncertainty, quality and reliabilityissues are addressed, too. Transient fitting to non-stabilised signaltime series, by means of combinations of exponential functions withdifferent time constants, improves the actual average signals andreduces their uncertainty. Results: .The emission of NGC 6543 inthe 3.6 μm band coincides with the core region of the optical nebulaand is homogeneously distributed. It is comprised of 65% continuum and35% atomic hydrogen line emission. In the 12 μm band a resolved butcompact double source is surrounded by a fainter ring structure with allemission confined to the optical core region. Strong line emission of[ArIII] at 8.99 μm and in particular [SIV] at 10.51 μm shapes thisspatial profile. The unresolved 60 μm emission originates from dust.It is described by a modified (emissivity index β = 1.5) blackbodywith a temperature of 85 K, suggesting that warm dust with a mass of 6.4× 10-4 Mȯ is mixed with the ionisedgas. The gas-to-dust mass ratio is about 220. The 25 μm emission ofNGC 7008 is characterised by a FWHM of about 50´´ with anadditional spot-like or ring-like enhancement at the bright rim of theoptical nebula. The 60 μm emission exhibits a similar shape, but isabout twice as extended. Analysis of the spectral energy distributionsuggests that the 25 μm emission is associated with 120 K warm dust,while the 60 μm emission is dominated by a second dust component with55 K. The dust mass associated with this latter component amounts to 1.2× 10-3 Mȯ, significantly higher thanpreviously derived. The gas-to-dust mass ratio is 59 which, compared tothe average value of 160 for the Milky Way, hints at dust enrichment bythis object.

CO line emission from circumstellar envelopes
Aims.We present the results of a multi-transition CO observationalprogram conducted on a sample of AGB and post-AGB stars envelopes. Wehave collected maps and single pointing observations of these envelopesin 5 rotational transitions ranging from J = 1-0 to J = 6-5, includingin particular new observations of the CO line at 691 GHz at the CSO. Theuse of such a set of mm and submm CO line on stellar envelopes is rareand limited to the work of some authors on IRC+10216. Methods:.Using a model for the CO emission of an AGB circumstellar envelope, incombination with a standard LVG approach, we have conducted a systematicmodelling analysis using the whole set of CO data collected for a sampleof 12 sources. We simultaneously fit all five transitions, taking intoaccount the spatial information provided by the maps. Results: .Wefind mass-loss rates in the range 1 × 10-7 to 4 ×10-4 M_ȯ/yr, and envelope temperatures ranging from 20 Kto 1000 K at a radius of 1016 cm. There seem to be a generalanti-correlation between mass loss rates and temperature, the high massloss rate AGBs having low temperatures, and vice versa. We show thatmost AGB data can be fitted using a constant mass loss rate, at leastwithin the calibration uncertainties associated with the data collectedat different frequencies. For some cases though (e.g. CIT 6, R Hya,χ Cyg), a change in the mass loss rate history needs to be invokedto reconcile data at low- and high-J, a scenario already mentioned byseveral authors to explain observations of WX Psc.

Infrared photometry and evolution of mass-losing AGB stars. I. Carbon stars revisited
As part of a reanalysis of galactic Asymptotic Giant Branch (AGB) starsat infrared (IR) wavelengths, we discuss a sample (357) of carbon starsfor which mass loss rates, near-IR photometry and distance estimatesexist. For 252 sources we collected mid-IR fluxes from the MSX (6C) andthe ISO-SWS catalogues. Most stars have spectral energy distributions upto 21 μm, and some (1/3) up to 45 μm. This wide wavelengthcoverage allows us to obtain reliable bolometric magnitudes. Theproperties of our sample are discussed with emphasis on ~70 stars withastrometric distances. We show that mid-IR fluxes are crucial toestimate the magnitude of stars with dusty envelopes. We construct HRdiagrams and show that the luminosities agree fairly well with modelpredictions based on the Schwarzschild's criterion, contrary to what iswidely argued in the literature. A problem with the brightness of Cstars does not appear to exist. From the relative number of Mira andSemiregular C-variables, we argue that the switch between these classesis unlikely to be connected to thermal pulses. The relevance of the twopopulations varies with the evolution, with Miras dominating the finalstages. We also analyze mass loss rates, which increase for increasingluminosity, but with a spread that probably results from a dependence ona number of parameters (like e.g. different stellar masses and differentmechanisms powering stellar winds). Instead, mass loss rates are wellmonitored by IR colours, especially if extended to 20 μm and beyond,where AGB envelopes behave like black bodies. From these colours theevolutionary status of various classes of C stars is discussed.

Forty Years of Spectroscopic Stellar Astrophysics in Japan
The development of Japanese spectroscopic stellar astrophysics in therecent 40 years is reviewed from an observational point of view. In thisarticle, the research activities are provisionally divided into fourfields: hot stars, hot emission-line (Be) stars, cool stars, and otherstars. Historical developments of the observational facilities atOkayama Astrophysical Observatory (spectrographs and detectors) are alsosummarized in connection with the progress in scientific researchactivities.

Presolar Graphite from AGB Stars: Microstructure and s-Process Enrichment
Correlated transmission electron microscopy and secondary ion massspectrometry with submicron spatial resolution (NanoSIMS) investigationsof the same presolar graphites spherules from the Murchison meteoritewere conducted, to link the isotopic anomalies with the mineralogy andchemical composition of the graphite and its internal grains. Refractorycarbide grains (especially titanium carbide) are commonly found withinthe graphite spherules, and most have significant concentrations of Zr,Mo, and Ru in solid solution, elements primarily produced by s-processnucleosynthesis. The effect of chemical fractionation on the Mo/Ti ratioin these carbides is limited, and therefore from this ratio one caninfer the degree of s-process enrichment in the gas from which thegraphite condensed. The resulting s-process enrichments within carbidesare large (~200 times solar on average), showing that most of thecarbide-containing graphites formed in the mass outflows of asymptoticgiant branch (AGB) stars. NanoSIMS measurements of these graphites alsoshow isotopically light carbon (mostly in the100<12C/13C<400 range). The enrichment ofthese presolar graphites in both s-process elements and 12Cconsiderably exceeds that astronomically observed around carbon stars.However, a natural correlation exists between 12C ands-process elements, as both form in the He intershell region ofthermally pulsing AGB stars and are dredged up together to the surface.Their observation together suggests that these graphites may have formedin chemically and isotopically inhomogeneous regions around AGB stars,such as high-density knots or jets. As shown in the companion paper, agas density exceeding that expected for smooth mass outflows is requiredfor graphite of the observed size to condense at all in circumstellarenvironments, and the spatially inhomogeneous, high-density regions fromwhich they condense may also be incompletely mixed with the surroundinggas. We have greatly expanded the available data set of presolargraphites (N=847) and characterized them by their morphology (onion typeand cauliflower type). This effort has also revealed two new, rarepresolar phases (iron carbide and metallic osmium). Due to the peculiargas composition needed to form these rare presolar grain types, thegraphites containing them are more likely to originate in supernovaoutflows.

Properties of detached shells around carbon stars. Evidence of interacting winds
The nature of the mechanism responsible for producing the spectacular,geometrically thin, spherical shells found around some carbon stars hasbeen an enigma for some time. Based on extensive radiative transfermodelling of both CO line emission and dust continuum radiation for allobjects with known detached molecular shells, we present compellingevidence that these shells show clear signs of interaction with asurrounding medium. The derived masses of the shells increase withradial distance from the central star while their velocities decrease. Asimple model for interacting winds indicates that the mass-loss rateproducing the faster moving wind has to be almost two orders ofmagnitudes higher (~10-5 Mȯ yr-1)than the slower AGB wind (a few 10-7 Mȯyr-1) preceding this violent event. At the same time, thepresent-day mass-loss rates are very low indicating that the epoch ofhigh mass-loss rate was relatively short, on the order of a few hundredyears. This, together with the number of sources exhibiting thisphenomenon, suggests a connection with He-shell flashes (thermalpulses). We report the detection of a detached molecular shell aroundthe carbon star DR Ser, as revealed from newsingle-dish CO (sub-)millimetre line observations. The properties of theshell are similar to those characterising the young shell aroundU Cam.

Three-micron spectra of AGB stars and supergiants in nearby galaxies
The dependence of stellar molecular bands on the metallicity is studiedusing infrared L-band spectra of AGB stars (both carbon-rich andoxygen-rich) and M-type supergiants in the Large and Small MagellanicClouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. Thespectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CHand HCN bands for carbon-rich AGB stars. The equivalent width ofacetylene is found to be high even at low metallicity. The high C2H2abundance can be explained with a high carbon-to-oxygen (C/O) ratio forlower metallicity carbon stars. In contrast, the HCN equivalent width islow: fewer than half of the extra-galactic carbon stars show the 3.5μm HCN band, and only a few LMC stars show high HCN equivalent width.HCN abundances are limited by both nitrogen and carbon elementalabundances. The amount of synthesized nitrogen depends on the initialmass, and stars with high luminosity (i.e. high initial mass) could havea high HCN abundance. CH bands are found in both the extra-galactic andGalactic carbon stars. One SMC post-AGB star, SMC-S2, shows the 3.3μm PAH band. This first detection of a PAH band from an SMC post-AGBstar confirms PAHs can form in these low-metallicity stars. None of theoxygen-rich LMC stars show SiO bands, except one possible detection in alow quality spectrum. The limits on the equivalent widths of the SiObands are below the expectation of up to 30 Å for LMC metallicity.Several possible explanations are discussed, mostly based on the effectof pulsation and circumstellar dust. The observations imply that LMC andSMC carbon stars could reach mass-loss rates as high as their Galacticcounterparts, because there are more carbon atoms available and morecarbonaceous dust can be formed. On the other hand, the lack of SiOsuggests less dust and lower mass-loss rates in low-metallicityoxygen-rich stars. The effect on the ISM dust enrichment is discussed.

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

The mass loss of C-rich giants
The mass loss rates, expansion velocities and dust-to-gas density ratiosfrom millimetric observations of 119 carbon-rich giants are compared, asfunctions of stellar parameters, to the predictions of recenthydrodynamical models. Distances and luminosities previously estimatedfrom HIPPARCOS data, masses from pulsations and C/O abundance ratiosfrom spectroscopy, and effective temperatures from a new homogeneousscale, are used. Predicted and observed mass loss rates agree fairlywell, as functions of effective temperature. The signature of the massrange M≤4 Mȯ of most carbon-rich AGB stars is seenas a flat portion in the diagram of mass loss rate vs. effectivetemperature. It is flanked by two regions of mass loss rates increasingwith decreasing effective temperature at nearly constant stellar mass.Four stars with detached shells, i.e. episodic strong mass loss, andfive cool infrared carbon-rich stars with optically-thick dust shells,have mass loss rates much larger than predicted values. The latter(including CW Leo) could be stars of smaller masses (M≃ 1.5-2.5Mȯ) while M≃ 4 Mȯ is indicated formost of the coolest objects. Among the carbon stars with detachedshells, R Scl returned to a predicted level (16 times lower) accordingto recent measurements of the central source. The observed expansionvelocities are in agreement with the predicted velocities at infinity ina diagram of velocities vs. effective temperature, provided the carbonto oxygen abundance ratio is 1≤ɛ C/ɛO≤2, i.e. the range deduced from spectra and modelatmospheres of those cool variables. Five stars with detached shellsdisplay expansion velocities about twice that predicted at theireffective temperature. Miras and non-Miras do populate the same locus inboth diagrams at the present accuracy. The predicted dust-to-gas densityratios are however about 2.2 times smaller than the values estimatedfrom observations. Recent drift models can contribute to minimize thediscrepancy since they include more dust. Simple approximate formulaeare proposed.This research has made use of the Simbad database operated at CDS.Partially based on data from the ESA HIPPARCOS astrometry satellite.Table 3 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/235

Merrill-Sanford bands in Large Magellanic Cloud carbon stars
From a sample of 304 carbon stars in the central parts of the LargeMagellanic Cloud (LMC), ~27 per cent have Merrill-Sanford (MS) bands ofthe SiC2 molecule. The data are based on a uniform set ofspectra taken with 2dF on the Anglo-Australian Telescope, and giveuseful statistics on the incidence of MS bands and on their correlation(or otherwise) with other properties. All of these are red stars, coolerthan 3100 K. The proportion of stars showing the bands is highestamongst the coolest stars, but not all very cool stars show the bands.There is no evidence that MS bands are more common in J-type stars(carbon stars with a high 13C/12C ratio) than inN-type carbon stars, at least within this sample of LMC stars. There isno apparent correlation with stellar variability, or between thephotospheric temperature [as measured by (J-K)] and the occurrence ofthe `hot' MS bands from excited molecular states.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

The circumstellar environments of EP Aqr and Y CVn probed by the H I emission at 21 cm
The H I line at 21 cm has been detected in the circumstellar shells ofthe two semi-regular variables, EP Aqr and Y CVn, with the NançayRadio-Telescope (NRT). In both cases the line shape is composite and theemission is spatially extended compared to the NRT beam size (4 arcmin).The total H I masses of the two envelopes are respectively ˜0.047Mȯ and 0.044 Mȯ. For EP Aqr, we findthree components: a narrow one centered on the star and spatiallyunresolved, and two broad, Gaussian components, offset w.r.t. the starand spatially extended. The narrow component traces the present windfrom EP Aqr whereas the two others seem to trace one or severalmass-loss episodes of long duration. For Y CVn, we find two components:a narrow, spatially very extended, feature, and a broad one, lessextended. We argue that the second component traces the outflow and thefirst one, its interaction with the ISM. These observations show thatthe H I emission can be used not only to probe the mass loss history oflong-period variables, but also to investigate the interaction betweenstellar outflows and the surrounding ISM.

Molecular and dust features of 29 SiC carbon AGB stars
We have reduced and analyzed the Infrared Space Observatory (ISO)Short-Wavelength Spectrometer (SWS) spectra of 29 infrared carbon starswith a silicon carbide feature at 11.30 μm, 17 of which have not beenpreviously published. Absorption or emission features of C2,HCN, C2H2, C3 and silicon carbide (SiC)have been identified in all 17 unpublished carbon stars. In addition,two unidentified absorption features at 3.50 and 3.65 μm are listedfor the first time in this paper. We classify these 29 carbon stars intogroups A, B, C and D according to the shapes of their spectral energydistribution, and this classification seems to show an evolutionarysequence of carbon stars with an SiC feature. Moreover we have found thefollowing results for the different groups: on average, the relativeintegrated flux of the 3.05 μm C2H2+HCNabsorption feature increases gradually from group A to B and C; that ofthe 5.20 μm C3 absorption feature becomes gradually weakerfrom group A to B and C; that of the 11.30 μm SiC emission featureincreases gradually from group A to B and C but weakens in group D; andin contrast, that of the 13.70 μm C2H2absorption feature weakens gradually from group A to B and C but becomesstronger in group D. We suggest that the evolution of the IR spectra ofcarbon stars along the sequence A to D is a result of the followingphenomena: as the near-IR black-body temperature (Tnir)decreases, the circumstellar envelope becomes thicker; also theeffective temperature (Teff) of the photosphere of thecentral star decreases gradually and the C/O ratio increases from A toB.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) with the participation of ISAS and NASA.

Infrared investigation from earth and space on the evolutionary state of a sample of LPV
We selected a sample of highly reddened AGB stars among the sourcesobserved with the SWS instrument on the ISO satellite. These SWS dataallow us to compute the source's photometry in the mid-IR filters of thecamera TIRCAM at the TIRGO telescope. Our photometric data, supplementedwith other measurements taken from the literature, permit to select thecarbon-rich sources in the sample. For these stars, a linear relationholds between dust mass loss and the color index [8.8]-[12.5]. One maythen, from photometric data alone, evaluate the total mass loss (forwhich we used the estimate of \citet{loup}, based on radio data). Theoxygen-rich sources, on the other hand, are distributed in two branches,of which the upper one appears superimposed with carbon stars; the starsin this group have both high luminosity and high wind velocity andtherefore higher masses. Finally S stars lie between the carbon-starbranch and the low-mass oxygen-rich stars, in agreement with theirintermediate evolutionary status.

Preliminary analysis of light curves of seven carbon stars
We present a preliminary analysis of the light curves of the followingcarbon stars: WZ Cas, VY UMa, Y CVn, RY Dra, T Lyr, HK Lyr and TT Cyg,constructed on the basis of our own BV photoelectric observationsobtained at the Brno Observatory in 1979-94 and Hipparcos observations.The analysis suggests that "semiregular" light curves of all studiedstars can faithfully be expressed by a superposition of long-termchanges and a set of medium-term harmonic variations (possiblypulsations) with periods from 50 to 500 days.

Spectral Classification of Faint Carbon Stars
R--N classification of 187 faint carbon stars is based on the classicalcriteria adjusted to the yellow-red spectral region, with two newcriteria added -- the ratios of the red CN bands 6206/6332 (Å) and6478/6631 (Å).

Detection of a Second, Strong Submillimeter HCN Laser Line toward Carbon Stars
We have searched for and found strong laser action at a frequency near891 GHz in the J=10-9 transition between the (1110) and(0400) vibrationally excited states of HCN toward themass-losing carbon stars IRC +10216, CIT6, and Y CVn. This line is partof a Coriolis-coupled system that has been well studied in thelaboratory during the early years of molecular laser spectroscopy. Thissystem also includes the 805 GHz J=9-8 transition within the(0400) state that was discovered toward IRC +10216 bySchilke, Mehringer, & Menten and that we also find to be lasing inCIT6. Toward both stars, the 891 GHz line is about an order of magnitudestronger than the 805 GHz line, and observations spaced about half ayear apart provide clear evidence for temporal variability. As wasconcluded for the latter, given that the lines' lower energy levels are4200 K over the ground state, they must arise from the innermost partsof the stars' circumstellar envelopes. Future high-resolutioninterferometric observations with the Atacama Large Millimeter Array ofthe HCN laser lines will yield important information on the dustformation zone of carbon stars.

Observations of C3 in Translucent Sight Lines
The A1Πu<--X1Σ+g transition of the simplestpolyatomic carbon chain molecule, C3, at 4051.6 Å hasbeen searched for toward reddened stars where abundant C2 hadbeen reported and toward other stars with high color excess. Absorptionfrom C3 has been detected toward 15 stars with color excessE(B-V) from 0.33 to 1.12. The observed C3 column densities,ranging from 1012 to 1013 cm-2, arewell correlated with the corresponding C2 column densities,with N(C2)/N(C3)~40, indicating their closechemical relation. The carbon-rich sight line toward HD 204827 (forwhich no previous C2 observation had been reported) has byfar the highest C3 and C2 column densities. Thechemistry of formation of C3 from C2 is discussed.A search for the next strongest 020-000 vibronic band was unsuccessfulas a result of the low Franck-Condon factor and interference with astellar line. Searches for C4 and C5 werenegative.

Infrared Colors and Variability of Evolved Stars from COBE DIRBE Data
For a complete 12 μm flux-limited sample of 207 IRAS sources(F12>=150 Jy, |b|>=5deg), the majority ofwhich are AGB stars (~87%), we have extracted light curves in seveninfrared bands between 1.25 and 60 μm using the database of theDiffuse Infrared Background Experiment (DIRBE) instrument on the CosmicBackground Explorer (COBE) satellite. Using previous infrared surveys,we filtered these light curves to remove data points affected by nearbycompanions and obtained time-averaged flux densities and infraredcolors, as well as estimates of their variability at each wavelength. Inthe time-averaged DIRBE color-color plots, we find clear segregation ofsemiregulars, Mira variables, carbon stars, OH/IR stars, and red giantswithout circumstellar dust (i.e., V-[12]<5) and with little or novisual variation (ΔV<0.1 mag). The DIRBE 1.25-25 μm colorsbecome progressively redder and the variability in the DIRBE databaseincreases along the oxygen-rich sequence nondusty slightly varying redgiants-->SRb/Lb-->SRa-->Mira-->OH/IR and the carbon-richSRb/Lb-->Mira sequence. This supports previous assertions that theseare evolutionary sequences involving the continued production andejection of dust. The carbon stars are redder than their oxygen-richcounterparts for the same variability type, except in theF12/F25 ratio, where they are bluer. Of the 28sources in the sample not previous noted to be variable, 18 are clearlyvariable in the DIRBE data, with amplitudes of variation of ~0.9 mag at4.9 μm and ~0.6 mag at 12 μm, consistent with them being verydusty Mira-like variables. We also present individual DIRBE light curvesof a few selected stars. The DIRBE light curves of the semiregularvariable L2 Pup are particularly remarkable. The maxima at1.25, 2.2, and 3.5 μm occur 10-20 days before those at 4.9 and 12μm, and, at 4.9 and 12 μm, another maximum is seen between the twonear-infrared maxima.

Reprocessing the Hipparcos data of evolved stars. III. Revised Hipparcos period-luminosity relationship for galactic long-period variable stars
We analyze the K band luminosities of a sample of galactic long-periodvariables using parallaxes measured by the Hipparcos mission. Theparallaxes are in most cases re-computed from the Hipparcos IntermediateAstrometric Data using improved astrometric fits and chromaticitycorrections. The K band magnitudes are taken from the literature andfrom measurements by COBE, and are corrected for interstellar andcircumstellar extinction. The sample contains stars of several spectraltypes: M, S and C, and of several variability classes: Mira, semiregularSRa, and SRb. We find that the distribution of stars in theperiod-luminosity plane is independent of circumstellar chemistry, butthat the different variability types have different P-L distributions.Both the Mira variables and the SRb variables have reasonablywell-defined period-luminosity relationships, but with very differentslopes. The SRa variables are distributed between the two classes,suggesting that they are a mixture of Miras and SRb, rather than aseparate class of stars. New period-luminosity relationships are derivedbased on our revised Hipparcos parallaxes. The Miras show a similarperiod-luminosity relationship to that found for Large Magellanic CloudMiras by Feast et al. (\cite{Feast-1989:a}). The maximum absolute Kmagnitude of the sample is about -8.2 for both Miras and semi-regularstars, only slightly fainter than the expected AGB limit. We show thatthe stars with the longest periods (P>400 d) have high mass lossrates and are almost all Mira variables.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA \cite{Hipparcos}).Table \ref{Tab:data1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/993

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

A Wall of Dust around a Proto-Mira?
We present the discovery of a huge (19'×16')dust ring surrounding a bright (V=10.60) red star. The dust ring has, atD=700 pc, a diameter of 4 pc and a central hole of ~1.5 pc across. Partof the shell is also seen as an absorption nebulosity. The star isclassified as an M3 III asymptotic giant branch (AGB) star. Among AGBstars, its detached shell is of unrivaled size. Detached shells aroundAGB stars are normally interpreted in terms of thermal pulses. However,in this case, a significant fraction of the shell may consist ofswept-up ISM; the detached appearance can be explained with wind-ISMinteraction. We present a model in which the AGB wind has been stoppedby the surrounding ISM and the swept-up shell is now expanding at thesound speed. The model predicts that the ring will disperse over a fewtimes 105 yr and eventually will leave a large hole in theISM surrounding the AGB star or its future planetary nebula.

Probing the mass loss history of carbon stars using CO line and dust continuum emission
An extensive modelling of CO line emission from the circumstellarenvelopes around a number of carbon stars is performed. By combiningradio observations and infrared observations obtained by ISO thecircumstellar envelope characteristics are probed over a large radialrange. In the radiative transfer analysis the observational data areconsistently reproduced assuming a spherically symmetric and smooth windexpanding at a constant velocity. The combined data set gives betterdetermined envelope parameters, and puts constraints on the mass losshistory of these carbon stars. The importance of dust in the excitationof CO is addressed using a radiative transfer analysis of the observedcontinuum emission, and it is found to have only minor effects on thederived line intensities. The analysis of the dust emission also putsfurther constraints on the mass loss rate history. The stars presentedhere are not likely to have experienced any drastic long-term mass lossrate modulations, at least less than a factor of ~ 5, over the pastthousands of years. Only three, out of nine, carbon stars were observedlong enough by ISO to allow a detection of CO far-infrared rotationallines. Based on observations with ISO, an ESA project with instrumentsfunded by ESA Member States (especially the PI countries: France,Germany, The Netherlands and the UK) and with the participation of ISASand NASA. Radio data collected with the OSO 20 m telescope, the SEST,and the JCMT, have also been used.

Carbon-rich giants in the HR diagram and their luminosity function
The luminosity function (LF) of nearly 300 Galactic carbon giants isderived. Adding BaII giants and various related objects, about 370objects are located in the RGB and AGB portions of the theoretical HRdiagram. As intermediate steps, (1) bolometric corrections arecalibrated against selected intrinsic color indices; (2) the diagram ofphotometric coefficients 1/2 vs. astrometric trueparallaxes varpi are interpreted in terms of ranges of photosphericradii for every photometric group; (3) coefficients CR andCL for bias-free evaluation of mean photospheric radii andmean luminosities are computed. The LF of Galactic carbon giantsexhibits two maxima corresponding to the HC-stars of the thick disk andto the CV-stars of the old thin disk respectively. It is discussed andcompared to those of carbon stars in the Magellanic Clouds and Galacticbulge. The HC-part is similar to the LF of the Galactic bulge,reinforcing the idea that the Bulge and the thick disk are part of thesame dynamical component. The CV-part looks similar to the LF of theLarge Magellanic Cloud (LMC), but the former is wider due to thesubstantial errors on HIPPARCOS parallaxes. The obtained meanluminosities increase with increasing radii and decreasing effectivetemperatures, along the HC-CV sequence of photometric groups, except forHC0, the earliest one. This trend illustrates the RGB- and AGB-tracks oflow- and intermediate-mass stars for a range in metallicities. From acomparison with theoretical tracks in the HR diagram, the initial massesMi range from about 0.8 to 4.0 Msun for carbongiants, with possibly larger masses for a few extreme objects. A largerange of metallicities is likely, from metal-poor HC-stars classified asCH stars on the grounds of their spectra (a spheroidal component), tonear-solar compositions of many CV-stars. Technetium-rich carbon giantsare brighter than the lower limit Mbol =~ -3.6+/- 0.4 andcentered at =~-4.7+0.6-0.9 at about =~(2935+/-200) K or CV3-CV4 in our classification. Much like the resultsof Van Eck et al. (\cite{vaneck98}) for S stars, this confirms theTDU-model of those TP-AGB stars. This is not the case of the HC-stars inthe thick disk, with >~ 3400 K and>~ -3.4. The faint HC1 and HC2-stars( =~ -1.1+0.7-1.0) arefound slightly brighter than the BaII giants ( =~-0.3+/-1.3) on average. Most RCB variables and HdC stars range fromMbol =~ -1 to -4 against -0.2 to -2.4 for those of the threepopulation II Cepheids in the sample. The former stars show the largestluminosities ( <~ -4 at the highest effectivetemperatures (6500-7500 K), close to the Mbol =~ -5 value forthe hot LMC RCB-stars (W Men and HV 5637). A full discussion of theresults is postponed to a companion paper on pulsation modes andpulsation masses of carbon-rich long period variables (LPVs; Paper IV,present issue). This research has made use of the Simbad databaseoperated at CDS, Strasbourg, France. Partially based on data from theESA HIPPARCOS astrometry satellite. Table 2 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/967

The carrier of the ``30'' mu m emission feature in evolved stars. A simple model using magnesium sulfide
We present 2-45 mu m spectra of a large sample of carbon-rich evolvedstars in order to study the ``30'' mu m feature. We find the ``30'' mu mfeature in a wide range of sources: low mass loss carbon stars, extremecarbon-stars, post-AGB objects and planetary nebulae. We extract theprofiles from the sources by using a simple systematic approach to modelthe continuum. We find large variations in the wavelength and width ofthe extracted profiles of the ``30'' mu m feature. We modelled the wholerange of profiles in a simple way by using magnesium sulfide (MgS) dustgrains with a MgS grain temperature different from the continuumtemperature. The systematic change in peak positions can be explained bycooling of MgS grains as the star evolves off the AGB. In severalsources we find that a residual emission excess at ~ 26 mu m can also befitted using MgS grains but with a different grains shape distribution.The profiles of the ``30'' mu m feature in planetary nebulae arenarrower than our simple MgS model predicts. We discuss the possiblereasons for this difference. We find a sample of warm carbon-stars withvery cold MgS grains. We discuss possible causes for this phenomenon. Wefind no evidence for rapid destruction of MgS during the planetarynebula phase and conclude that the MgS may survive to be incorporated inthe ISM. Based on observations obtained with ISO, an ESA project withinstruments funded by ESA Member states (especially the PI countries:France, Germany, The Netherlands and the United Kingdom) with theparticipation of ISAS and NASA. Appendix A (Figs. A.1 and A.2) is onlyavailable in electronic form at http://www.edpsciences.org

CHARM: A Catalog of High Angular Resolution Measurements
The Catalog of High Angular Resolution Measurements (CHARM) includesmost of the measurements obtained by the techniques of lunaroccultations and long-baseline interferometry at visual and infraredwavelengths, which have appeared in the literature or have otherwisebeen made public until mid-2001. A total of 2432 measurements of 1625sources are included, along with extensive auxiliary information. Inparticular, visual and infrared photometry is included for almost allthe sources. This has been partly extracted from currently availablecatalogs, and partly obtained specifically for CHARM. The main aim is toprovide a compilation of sources which could be used as calibrators orfor science verification purposes by the new generation of largeground-based facilities such as the ESO Very Large Interferometer andthe Keck Interferometer. The Catalog is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/386/492, and from theauthors on CD-Rom.

General Catalog of Galactic Carbon Stars by C. B. Stephenson. Third Edition
The catalog is an updated and revised version of Stephenson's Catalogueof Galactic Cool Carbon Stars (2nd edition). It includes 6891 entries.For each star the following information is given: equatorial (2000.0)and galactic coordinates, blue, visual and infrared magnitudes, spectralclassification, references, designations in the most significantcatalogs and coordinate precision classes. The main catalog issupplemented by remarks containing information for which there was noplace in entries of the main part, as well as some occasional notesabout the peculiarities of specific stars.

Discovery of Two New HCN Maser Lines in Five Carbon Stars
A survey with the Heinrich Hertz Submillimeter Telescope of HCN emissionfrom mass-losing carbon stars has revealed masers in the J=3-2 and 4-3transitions of the (011c0) vibrational bending mode. Theselines have not previously been known to show maser action. Five stars-RScl, V384 Per, R Lep, Y CVn, and V Cyg-out of 12 observed were detectedas masers. Allowing for evidence of variability, this detection ratesuggests that these HCN lines are masers at least some of the time inthe majority of mass-losing carbon stars. The line widths and velocitiesimply that the maser action occurs in gas close to the star, where thecircumstellar envelope is just being accelerated outward.

High-Resolution Images of CO J=2-1 Emission from the Carbon Star V Cygni
This paper presents observations of the CO J=2-1 emission from thecircumstellar envelope of the mass-losing carbon star V Cyg. Theobservations were made with the Caltech Millimeter Array. A previouslypublished single-dish map was used to construct short-spacingvisibilities not sampled by the interferometer data, thereby recoveringmissing flux in extended low brightness emission. The images have anangular resolution of ~1.2" with a velocity resolution of 1 MHz (1.3 kms-1). The channel maps are consistent with an expandingenvelope that is roughly spherical, but they also show evidence forasymmetric structure, as well as small-scale clumping. We compare theseobservations, as well as other published spectra, with statisticalequilibrium models for CO in a circumstellar envelope. Models that fitthe spherically averaged data must invoke a mass-loss rate, M, that hasdecreased with time by a factor of ~2-3 over the past several hundredyears. The model kinetic temperature structure in radius,TK(r), decreases as r-0.8 out tor~6×1015 cm and levels off to a constant value atTK=23 K beyond. The secular change in M may be related tochanges in the stellar luminosity or temperature, as predicted by recentnumerical hydrodynamic models for mass loss. The inferred kinetictemperature structure suggests that heating by the photoelectric effecton dust grains is important in the outer envelope.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Chiens de chasse
Right ascension:12h45m07.80s
Declination:+45°26'25.0"
Apparent magnitude:4.99
Distance:217.865 parsecs
Proper motion RA:-0.5
Proper motion Dec:12.8
B-T magnitude:9.664
V-T magnitude:5.664

Catalogs and designations:
Proper NamesLa Superba
HD 1989HD 110914
TYCHO-2 2000TYC 3459-2147-1
USNO-A2.0USNO-A2 1350-08160367
BSC 1991HR 4846
HIPHIP 62223

→ Request more catalogs and designations from VizieR