Home     Sopravvivere Nell'Universo    
Services
    Perché adottare     Donatori     Astro Foto     La collezione     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 136064


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

Reliability Checks on the Indo-US Stellar Spectral Library Using Artificial Neural Networks and Principal Component Analysis
The Indo-US coudé feed stellar spectral library (CFLIB) madeavailable to the astronomical community recently by Valdes et al. (2004,ApJS, 152, 251) contains spectra of 1273 stars in the spectral region3460 to 9464Å at a high resolution of 1Å (FWHM) and a widerange of spectral types. Cross-checking the reliability of this databaseis an important and desirable exercise since a number of stars in thisdatabase have no known spectral types and a considerable fraction ofstars has not so complete coverage in the full wavelength region of3460-9464Å resulting in gaps ranging from a few Å to severaltens of Å. We use an automated classification scheme based onArtificial Neural Networks (ANN) to classify all 1273 stars in thedatabase. In addition, principal component analysis (PCA) is carried outto reduce the dimensionality of the data set before the spectra areclassified by the ANN. Most importantly, we have successfullydemonstrated employment of a variation of the PCA technique to restorethe missing data in a sample of 300 stars out of the CFLIB.

IRS Spectra of Solar-Type Stars: A Search for Asteroid Belt Analogs
We report the results of a spectroscopic search for debris diskssurrounding 41 nearby solar-type stars, including eight planet-bearingstars, using the Infrared Spectrometer (IRS) on the Spitzer SpaceTelescope. With the accurate relative photometry of the IRS between 7and 34 μm we are able to look for excesses as small as ~2% ofphotospheric levels, with particular sensitivity to weak spectralfeatures. For stars with no excess, the 3 σ upper limit in a bandat 30-34 μm corresponds to ~75 times the brightness of our zodiacaldust cloud. Comparable limits at 8.5-13 μm correspond to ~1400 timesthe brightness of our zodiacal dust cloud. These limits correspond tomaterial located within the <1 to ~5 AU region that, in our solarsystem, originates predominantly from debris associated with theasteroid belt. We find excess emission longward of ~25 μm from fivestars, of which four also show excess emission at 70 μm. Thisemitting dust must be located in a region starting around 5-10 AU. Onestar has 70 μm emission but no IRS excess. In this case, the emittingregion must begin outside 10 AU; this star has a known radial velocityplanet. Only two stars of the five show emission shortward of 25 μm,where spectral features reveal the presence of a population of small,hot dust grains emitting in the 7-20 μm band. One of these stars, HD72905, is quite young (300 Myr), while the other, HD 69830, is olderthan 2 Gyr. The data presented here strengthen the results of previousstudies to show that excesses at 25 μm and shorter are rare: only 1out of 40 stars older than 1 Gyr or ~2.5% shows an excess. Asteroidbelts 10-30 times more massive than our own appear are rare amongmature, solar-type stars.

Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey
We have searched for infrared excesses around a well-defined sample of69 FGK main-sequence field stars. These stars were selected withoutregard to their age, metallicity, or any previous detection of IRexcess; they have a median age of ~4 Gyr. We have detected 70 μmexcesses around seven stars at the 3 σ confidence level. Thisextra emission is produced by cool material (<100 K) located beyond10 AU, well outside the ``habitable zones'' of these systems andconsistent with the presence of Kuiper Belt analogs with ~100 times moreemitting surface area than in our own planetary system. Only one star,HD 69830, shows excess emission at 24 μm, corresponding to dust withtemperatures >~300 K located inside of 1 AU. While debris disks withLdust/L*>=10-3 are rare around oldFGK stars, we find that the disk frequency increases from 2%+/-2% forLdust/L*>=10-4 to 12%+/-5% forLdust/L*>=10-5. This trend in thedisk luminosity distribution is consistent with the estimated dust inour solar system being within an order of magnitude greater or less thanthe typical level around similar nearby stars. Although there is nocorrelation of IR excess with metallicity or spectral type, there is aweak correlation with stellar age, with stars younger than a gigayearmore likely to have excess emission.

Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet
An extensive profile-fitting analysis was performed for the Li(+Fe)6707-6708Å feature of nearby 160 F-K dwarfs/subgiants (including27 planet-host stars) in the Galactic disk ( 7000 K ≳Teff ≳ 5000 K, -1 ≲ [Fe/H] ≲ +0.4), in orderto establish the photospheric lithium abundances of these stars. Thenon-LTE effect (though quantitatively insignificant) was taken intoaccount based on our statistical equilibrium calculations, which werecarried out on an adequate grid of models. Our results confirmed most ofthe interesting observational characteristics revealed by recentlypublished studies, such as the bimodal distribution of the Li abundancesfor stars at Teff ≳ 6000 K, the satisfactory agreementof the upper envelope of the A(Li) vs. [Fe/H] distribution with thetheoretical models, the existence of a positive correlation betweenA(Li) and the stellar mass, and the tendency of lower lithium abundancesof planet-host stars (as compared to stars without planets) at thenarrow ``transition'' region of 5900 K ≳ Teff ≳5800 K. The solar Li abundance derived from this analysis is 0.92 (H =12.00), which is by 0.24dex lower than the widely referenced standardvalue of 1.16.

Spectroscopic Study on the Atmospheric Parameters of Nearby F--K Dwarfs and Subgiants
Based on a collection of high-dispersion spectra obtained at OkayamaAstrophysical Observatory, the atmospheric parameters (Teff,log g, vt, and [Fe/H]) of 160 mid-F through early-K starswere extensively determined by the spectroscopic method using theequivalent widths of Fe I and Fe II lines along with the numericaltechnique of Takeda et al. (2002, PASJ, 54, 451). The results arecomprehensively discussed and compared with the parameter values derivedby different approaches (e.g., photometric colors, theoreticalevolutionary tracks, Hipparcos parallaxes, etc.) as well as with thepublished values found in various literature. It has been confirmed thatour purely spectroscopic approach yields fairly reliable and consistentresults.

Can Life Develop in the Expanded Habitable Zones around Red Giant Stars?
We present some new ideas about the possibility of life developingaround subgiant and red giant stars. Our study concerns the temporalevolution of the habitable zone. The distance between the star and thehabitable zone, as well as its width, increases with time as aconsequence of stellar evolution. The habitable zone moves outward afterthe star leaves the main sequence, sweeping a wider range of distancesfrom the star until the star reaches the tip of the asymptotic giantbranch. Currently there is no clear evidence as to when life actuallyformed on the Earth, but recent isotopic data suggest life existed atleast as early as 7×108 yr after the Earth was formed.Thus, if life could form and evolve over time intervals from5×108 to 109 yr, then there could behabitable planets with life around red giant stars. For a 1Msolar star at the first stages of its post-main-sequenceevolution, the temporal transit of the habitable zone is estimated to beseveral times 109 yr at 2 AU and around 108 yr at9 AU. Under these circumstances life could develop at distances in therange 2-9 AU in the environment of subgiant or giant stars, and in thefar distant future in the environment of our own solar system. After astar completes its first ascent along the red giant branch and the Heflash takes place, there is an additional stable period of quiescent Hecore burning during which there is another opportunity for life todevelop. For a 1 Msolar star there is an additional109 yr with a stable habitable zone in the region from 7 to22 AU. Space astronomy missions, such as proposed for the TerrestrialPlanet Finder (TPF) and Darwin, that focus on searches for signatures oflife on extrasolar planets, should also consider the environments ofsubgiants and red giant stars as potentially interesting sites forunderstanding the development of life. We performed a preliminaryevaluation of the difficulty of interferometric observations of planetsaround red giant stars compared to a main-sequence star environment. Weshow that pathfinder missions for TPF and Darwin, such as Eclipse andFKSI, have sufficient angular resolution and sensitivity to search forhabitable planets around some of the closest evolved stars of thesubgiant and red giant class.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Lithium abundances of the local thin disc stars
Lithium abundances are presented for a sample of 181 nearby F and Gdwarfs with accurate Hipparcos parallaxes. The stars are on circularorbits about the Galactic centre and, hence, are identified as belongingto the thin disc. This sample is combined with two published surveys toprovide a catalogue of lithium abundances, metallicities ([Fe/H]),masses, and ages for 451 F-G dwarfs, almost all belonging to the thindisc. The lithium abundances are compared and contrasted with publishedlithium abundances for F and G stars in local open clusters. The fieldstars span a larger range in [Fe/H] than the clusters for which [Fe/H]~=0.0 +/- 0.2. The initial (i.e. interstellar) lithium abundance of thesolar neighbourhood, as derived from stars for which astration oflithium is believed to be unimportant, is traced from logɛ(Li) =2.2 at [Fe/H]=-1 to logɛ(Li) = 3.2 at +0.1. This form for theevolution is dependent on the assumption that astration of lithium isnegligible for the stars defining the relation. An argument is advancedthat this latter assumption may not be entirely correct, and, theevolution of lithium with [Fe/H] may be flatter than previouslysupposed. A sharp Hyades-like Li dip is not seen among the field starsand appears to be replaced by a large spread among lithium abundances ofstars more massive than the lower mass limit of the dip. Astration oflithium by stars of masses too low to participate in the Li dip isdiscussed. These stars show little to no spread in lithium abundance ata given [Fe/H] and mass.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

A Search for 6Li in Lithium-Poor Stars with Planets
Using high-resolution, high-quality spectra, we investigate the presenceof 6Li in two lithium-poor stars that host extrasolarplanetary systems. We present improved atomic and molecular line listsfor the region in the vicinity of the lithium line at 6707.8 Å,and we produce an excellent fit to the solar spectrum. From line profilefitting, we find results consistent with no 6Li in either ofthe lithium-poor planet-bearing stars or in three comparison stars withand without planets, and 1 σ upper limits of 0.04 for the isotopicratios of the two lithium-poor stars give an upper limit of 0.3 Jupitermasses of material with primordial abundances that could have beenrecently deposited in their outer layers. Our results suggest thatpost-main-sequence accretion of planets or planetary material that isundepleted in lithium is uncommon.

Sodium abundances in nearby disk stars
We present sodium abundances for a sample of nearby stars. All resultshave been derived from NLTE statistical equilibrium calculations. Theinfluence of collisional interactions with electrons and hydrogen atomsis evaluated by comparison of the solar spectrum with very precise fitsto the Na I line cores. The NLTE effects are more pronounced inmetal-poor stars since the statistical equilibrium is dominated bycollisions of which at least the electronic component is substantiallyreduced. The resulting influence on the determination of sodiumabundances is in a direction opposite to that found previously for Mgand Al. The NLTE corrections are about -0.1 in thick-disk stars with[Fe/H] ˜-0.6. Our [Na/Fe] abundance ratios are about solar forthick- and thin-disk stars. The increase in [Na/Fe] as a function of[Fe/H] for metal-rich stars found by Edvardsson et al. (\cite{EAG93}) isconfirmed. Our results suggest that sodium yields increase with themetallicity, and quite large amounts of sodium may be produced by AGBstars. We find that [Na/Fe] ratios, together with either [Mg/Fe] ratio,kinematic data or stellar evolutionary ages, make possible theindividual discrimination between thin- and thick-disk membership.Based on observations collected at the Germany-Spanish AstronomicalCenter, Calar Alto, Spain.Tables \ref{table2} and \ref{table3} are only available in electronicform at http://www.edpsciences.org

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Photometry of the semi-regular variable and spectroscopic binary star RR Ursae Minoris
From 1994 to 2000 West used an Optec SPP3 photometer to obtain magnitudeestimates of the SRb variable, RR UMi. Upon analysis, a clear period of33.575 days was revealed, having an average peak-to-peak amplitude ofabout 0.11 magnitude. In retrospect, a similar period could be seen inbinocular observations made by Howarth and others from 1982 to 1990,though with greater scatter. Moreover both sets of data showedsurprising phase stability referred to the newly-revealed period.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Lithium and rotation in F and G dwarfs and subgiants
Lithium abundances have been determined in 127 F and G Pop I stars basedon new measurements of the equivalent width of the lambda 6707 ÅLi I line from their high resolution CCD spectra. Distances and absolutemagnitudes of these stars have been obtained from the HipparcosCatalogue and their masses and ages derived, enabling us to investigatethe behaviour of lithium as a function of these parameters. Based ontheir location on the HR diagram superposed on theoretical evolutionarytracks, the sample of the stars has been chosen to ensure that they havemore or less completed their Li depletion on the main sequence. A largespread in the Li abundances is found at any given effective temperatureespecially in the already spun down late F and early G stars. Thisspread persists even if the ``Li-dip'' stars that have evolved from themain sequence temperature interval 6500-6800 K are excluded. Stars inthe mass range up to 2 M/Msun when divided into threemetallicity groups show a linear correlation between Li abundance andmass, albeit with a large dispersion around it which is not fullyaccounted for by age either. The large depletions and the observedspread in Li are in contrast to the predictions of the standard stellarmodel calculations and suggest that they are aided by non-standardprocesses depending upon variables besides mass, age and metallicity.The present study was undertaken to examine, in particular, the effectsof rotation on the depletion of Li. No one-to-one correlation is foundbetween the Li abundance and the present projected rotational velocity.Instead the observed abundances seem to be dictated by the rotationalhistory of the star. However, it is noted that even this interpretationis subject to the inherent limitation in the measurement of the observedLi EQW for large rotational velocities.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/409/251

On the link between rotation, chromospheric activity and Li abundance in subgiant stars
The connection rotation-CaII emission flux-lithium abundance is analyzedfor a sample of bona fide subgiant stars, with evolutionary statusdetermined from HIPPARCOS trigonometric parallax measurements and fromthe Toulouse-Geneva code. The distribution of rotation and CaII emissionflux as a function of effective temperature shows a discontinuitylocated around the same spectral type, F8IV. Blueward of this spectraltype, subgiants have a large spread of values of rotation and CaII flux,whereas stars redward of F8IV show essentially low rotation and low CaIIflux. The strength of these declines depends on stellar mass. Theabundance of lithium also shows a sudden decrease. For subgiants withmass lower than about 1.2 Msun the decrease is located laterthan that in rotation and CaII flux, whereas for masses higher than 1.2Msun the decrease in lithium abundance is located around thespectral type F8IV. The discrepancy between the location of thediscontinuities of rotation and CaII emission flux and log n(Li) forstars with masses lower than 1.2 Msun seems to reflect thesensitivity of these phenomena to the mass of the convective envelope.The drop in rotation, which results mostly from a magnetic braking,requires an increase in the mass of the convective envelope less thanthat required for the decrease in log n(Li). The location of thediscontinuity in log n(Li) for stars with masses higher than 1.2Msun, in the same region of the discontinuities in rotationand CaII emission flux, may also be explained by the behavior of thedeepening of the convective envelope. The more massive the star is, theearlier is the increase of the convective envelope. In contrast to therelationship between rotation and CaII flux, which is fairly linear, therelationship between lithium abundance and rotation shows no cleartendency toward linear behavior. Similarly, no clear linear trend isobserved in the relationship between lithium abundance and CaII flux. Inspite of these facts, subgiants with high lithium content also have highrotation and high CaII emission flux.

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Multiplicity among solar-type stars. III. Statistical properties of the F7-K binaries with periods up to 10 years
Two CORAVEL radial velocity surveys - one among stars in the solarneighbourhood, the other in the Pleiades and in Praesepe - are merged toderive the statistical properties of main-sequence binaries withspectral types F7 to K and with periods up to 10 years. A sample of 89spectroscopic orbits was finally obtained. Among them, 52 relate to afree-of-bias selection of 405 stars (240 field stars and 165 clusterstars). The statistics corrected for selection effects yield thefollowing results: (1) No discrepancy is found between the binariesamong field stars and the binaries in open cluster. The distributions ofmass ratios, of periods, the period-eccentricity diagram and the binaryfrequencies are all within the same error intervals. (2) Thedistribution of mass ratios presents two maxima: a broad peak from q ~0.2 to q ~ 0.7, and a sharp peak for q > 0.8 (twins). Both arepresent among the early-type as well as among the late-type part of thesample, indicating a scale-free formation process. The peak for q >0.8 gradually decreases when long-period binaries are considered.Whatever their periods, the twins have eccentricities significantlylower than the other binaries, confirming a difference in the formationprocesses. Twins could be generated by in situ formation followed byaccretion from a gaseous envelope, whereas binaries with intermediatemass ratios could be formed at wide separations, but they are madecloser by migration led by interactions with a circumbinary disk. (3)The frequency of binaries with P<10 years is about 14%. (4) About0.3% of binaries are expected to appear as false positives in a planetsearch. Therefore, the frequency of planetary systems among stars ispresently 7+4-2%. The extension of thedistribution of mass ratios in the planetary range would result in avery sharp and very high peak, well separated from the binary stars withlow mass ratios. Based on photoelectric radial-velocity measurementscollected at Haute-Provence observatory and on observations made withthe ESA Hipparcos astrometry satellite.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

The proper motions of fundamental stars. I. 1535 stars from the Basic FK5
A direct combination of the positions given in the HIPPARCOS cataloguewith astrometric ground-based catalogues having epochs later than 1939allows us to obtain new proper motions for the 1535 stars of the BasicFK5. The results are presented as the catalogue Proper Motions ofFundamental Stars (PMFS), Part I. The median precision of the propermotions is 0.5 mas/year for mu alpha cos delta and 0.7mas/year for mu delta . The non-linear motions of thephotocentres of a few hundred astrometric binaries are separated intotheir linear and elliptic motions. Since the PMFS proper motions do notinclude the information given by the proper motions from othercatalogues (HIPPARCOS, FK5, FK6, etc.) this catalogue can be used as anindependent source of the proper motions of the fundamental stars.Catalogue (Table 3) is only available at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strastg.fr/cgi-bin/qcat?J/A+A/365/222

Lithium and rotation on the subgiant branch. II. Theoretical analysis of observations
Lithium abundances and rotation, determined for 120 subgiant stars inLèbre et al. (1999) are analyzed. To this purpose, theevolutionary status of the sample as well as the individual masses havebeen determined using the HIPPARCOS trigonometric parallax measurementsto locate very precisely our sample stars in the HR diagram. We look atthe distributions of A_Li and Vsini with mass when stars evolve from themain sequence to the subgiant branch. For most of the stars in oursample we find good agreement with the dilution predictions. However,the more massive cool stars with upper limits of Li abundances show asignificant discrepancy with the theoretical predictions, even if theNon-LTE effects are taken into account. For the rotation behaviour, ouranalysis confirms that low mass stars leave the main sequence with a lowrotational rate, while more massive stars are slowed down only whenreaching the subgiant branch. We also checked the connection between theobserved rotation behaviour and the magnetic braking due to thedeepening of the convective envelope. Our results shed new light on thelithium and rotation discontinuities in the evolved phase.

Abundances of light elements in metal-poor stars. III. Data analysis and results
We present the results of the analysis of an extensive set of new andliterature high quality data concerning Fe, C, N, O, Na, and Mg. Thisanalysis exploited the T_eff scale determined in Gratton et al. (1996a),and the non-LTE abundance corrections computed in Gratton et al.(1999a). Results obtained with various abundance indices are discussedand compared. Detailed comparison with models of galactic chemicalevolution will be presented in future papers of this series. Our non-LTEanalysis yields the same O abundances from both permitted and forbiddenlines for stars with T_eff >4600 K, in agreement with King (1993),but not with other studies using a lower T_eff -scale for subdwarfs.However, we obtain slightly smaller O abundances for the most luminousmetal-poor field stars than for fainter stars of similar metallicities,an effect attributed to inadequacies of the adopted model atmospheres(Kurucz 1992, with overshooting) for cool stars. We find a nearlyconstant O overundance in metal-poor stars ([Fe/H]<-0.8), at a meanvalue of 0.46+/- 0.02 dex (sigma =0.12, 32 stars), with only a gentleslope with [Fe/H] ( ~ -0.1); this result is different from the steeperslope recently obtained using OH band in the near UV. If only bonafideunmixed stars are considered, C abundances scale with Fe ones (i.e.[C/Fe]~ 0) down to [Fe/H] ~ -2.5. Due to our adoption of a differentT_eff scale, we do not confirm the slight C excess in the most metalpoor disk dwarfs (-0.8<[Fe/H]<-0.4) found in previousinvestigations. Na abundances scale as Fe ones in the high metallicityregime, while metal-poor stars present a Na underabundance. None of thefield stars analyzed belong to the group of O-poor and Na-rich starsobserved in globular clusters. Na is deficient with respect to Mg inhalo and thick disk stars; within these populations, Na deficiency maybe a slow function of [Mg/H]. Solar [Na/Mg] ratios are obtained for thindisk stars. Tables~ 2 to 9 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strabg.fr/Abstract.html

Sixth Catalogue of Fundamental Stars (FK6). Part I. Basic fundamental stars with direct solutions
The FK6 is a suitable combination of the results of the HIPPARCOSastrometry satellite with ground-based data, measured over more than twocenturies and summarized in the FK5. Part I of the FK6 (abbreviatedFK6(I)) contains 878 basic fundamental stars with direct solutions. Suchdirect solutions are appropriate for single stars or for objects whichcan be treated like single stars. From the 878 stars in Part I, we haveselected 340 objects as "astrometrically excellent stars", since theirinstantaneous proper motions and mean (time-averaged) ones do not differsignificantly. Hence most of the astrometrically excellent stars arewell-behaving "single-star candidates" with good astrometric data. Thesestars are most suited for high-precision astrometry. On the other hand,199 of the stars in Part I are Δμ binaries in the sense ofWielen et al. (1999). Many of them are newly discovered probablebinaries with no other hitherto known indication of binarity. The FK6gives, besides the classical "single-star mode" solutions (SI mode),other solutions which take into account the fact that hidden astrometricbinaries among "apparently single-stars" introduce sizable "cosmicerrors" into the quasi-instantaneously measured HIPPARCOS proper motionsand positions. The FK6 gives in addition to the SI mode the "long-termprediction (LTP) mode" and the "short-term prediction (STP) mode". TheseLTP and STP modes are on average the most precise solutions forapparently single stars, depending on the epoch difference with respectto the HIPPARCOS epoch of about 1991. The typical mean error of anFK6(I) proper motion in the single-star mode is 0.35 mas/year. This isabout a factor of two better than the typical HIPPARCOS errors for thesestars of 0.67 mas/year. In the long-term prediction mode, in whichcosmic errors are taken into account, the FK6(I) proper motions have atypical mean error of 0.50 mas/year, which is by a factor of more than 4better than the corresponding error for the HIPPARCOS values of 2.21mas/year (cosmic errors included).

A Consistency Test of Spectroscopic Gravities for Late-Type Stars
Chemical analyses of late-type stars are usually carried out followingthe classical recipe: LTE line formation and homogeneous,plane-parallel, flux-constant, and LTE model atmospheres. We reviewdifferent results in the literature that have suggested significantinconsistencies in the spectroscopic analyses, pointing out thedifficulties in deriving independent estimates of the stellarfundamental parameters and hence, detecting systematic errors. Thetrigonometric parallaxes measured by the Hipparcos mission provideaccurate appraisals of the stellar surface gravity for nearby stars,which are used here to check the gravities obtained from thephotospheric iron ionization balance. We find an approximate agreementfor stars in the metallicity range -1.0<=[Fe/H]<=0, but thecomparison shows that the differences between the spectroscopic andtrigonometric gravities decrease toward lower metallicities for moremetal-deficient dwarfs (-2.5<=[Fe/H]<=-1.0), which casts a shadowupon the abundance analyses for extreme metal-poor stars that make useof the ionization equilibrium to constrain the gravity. The comparisonwith the strong-line gravities derived by Edvardsson and Fuhrmannconfirms that this method provide systematically larger gravities thanthe ionization balance. The strong-line gravities get closer to thephysical ones for the stars analyzed by Fuhrmann, but they are evenfurther away than the iron ionization gravities for the stars of lowergravities in Edvardsson's sample. The confrontation of the deviations ofthe iron ionization gravities in metal-poor stars, reported here withdepartures from the excitation balance found in the literature, showthat they are likely to be induced by the same physical mechanism.

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

A catalog of rotational and radial velocities for evolved stars
Rotational and radial velocities have been measured for about 2000evolved stars of luminosity classes IV, III, II and Ib covering thespectral region F, G and K. The survey was carried out with the CORAVELspectrometer. The precision for the radial velocities is better than0.30 km s-1, whereas for the rotational velocity measurementsthe uncertainties are typically 1.0 km s-1 for subgiants andgiants and 2.0 km s-1 for class II giants and Ib supergiants.These data will add constraints to studies of the rotational behaviourof evolved stars as well as solid informations concerning the presenceof external rotational brakes, tidal interactions in evolved binarysystems and on the link between rotation, chemical abundance and stellaractivity. In this paper we present the rotational velocity v sin i andthe mean radial velocity for the stars of luminosity classes IV, III andII. Based on observations collected at the Haute--Provence Observatory,Saint--Michel, France and at the European Southern Observatory, LaSilla, Chile. Table \ref{tab5} also available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Orsa Minore
Ascensione retta:15h14m38.30s
Declinazione:+67°20'48.0"
Magnitudine apparente:5.13
Distanza:25.31 parsec
Moto proprio RA:221
Moto proprio Dec:-392
B-T magnitude:5.796
V-T magnitude:5.21

Cataloghi e designazioni:
Nomi esatti
HD 1989HD 136064
TYCHO-2 2000TYC 4187-1365-1
USNO-A2.0USNO-A2 1500-05896366
BSC 1991HR 5691
HIPHIP 74605

→ Richiesta di ulteriori cataloghi da VizieR