Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
The object is not available for adoption  

NGC 6026


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Density gradients in Galactic planetary nebulae
Certain hydrodynamic models of planetary nebulae (PNe) suggest thattheir shells possess appreciable radial density gradients. However, theobservational evidence for such gradients is far from clear. On the onehand, Taylor et al. claim to find evidence for radio spectral indices0.6 < α < 1.8, a trend which is taken to imply a variationne ~ r-2 in most of their sample of PNe. On theother hand, Siódmiak & Tylenda find no evidence for any suchvariations in density; shell inhomogeneities, where they occur, areprimarily attributable to `blobs or condensations'.It will be suggested that both of these analyses are unreliable, andshould be treated with a considerable degree of caution. A new analysiswithin the log(F(5GHz)/F(1.4GHz))-log(TB(5GHz)) plane will beused to show that at least 10-20 per cent of PNe are associated withstrong density gradients. We shall also show that the ratioF(5GHz)/F(1.4GHz) varies with nebular radius; an evolution that can beinterpreted in terms of varying shell masses, and declining electrondensities.

Planetary nebula distances re-examined: an improved statistical scale
The distances of planetary nebulae (PNe) are still quite uncertain.Although observational estimates are available for a small proportion ofPNe, based on statistical parallax and the like, such distances are verypoorly determined for the majority of galactic PNe. In particular,estimates of so-called `statistical' distance appear to differ byfactors of ~2.7.We point out that there is a well-defined correlation between the 5-GHzluminosity of the sources, L5, and their brightnesstemperatures, TB. This represents a different trend to thoseinvestigated in previous statistical analyses, and permits us todetermine independent distances to a further 449 outflows. Thesedistances are shown to be closely comparable to those determined using aTB-R correlation, providing that the latter trend is taken tobe non-linear.This non-linearity in the TB-R plane has not been noted inprevious analyses, and is likely responsible for the broad (andconflicting) ranges of distance that have previously been published.Finally, we point out that there is a close accord between observedtrends within the L5-TB and TB-Rplanes, and the variation predicted through nebular evolutionarymodelling. This is used to suggest that observational biases areprobably modest, and that our revised distance scale is reasonablytrustworthy.

The relation between Zanstra temperature and morphology in planetary nebulae
We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.

Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates
We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}

Angular dimensions of planetary nebulae
We have measured angular dimensions of 312 planetary nebulae from theirimages obtained in Hα (or Hα + [NII]). We have appliedthree methods of measurements: direct measurements at the 10% level ofthe peak surface brightness, Gaussian deconvolution and second-momentdeconvolution. The results from the three methods are compared andanalysed. We propose a simple deconvolution of the 10% levelmeasurements which significantly improves the reliability of thesemeasurements for compact and partially resolved nebulae. Gaussiandeconvolution gives consistent but somewhat underestimated diameterscompared to the 10% measurements. Second-moment deconvolution givesresults in poor agreement with those from the other two methods,especially for poorly resolved nebulae. From the results of measurementsand using the conclusions of our analysis we derive the final nebulardiameters which should be free from systematic differences between small(partially resolved) and extended (well resolved) objects in our sample.Table 1 is only available in electronic form athttp://www.edpsciences.org

Comparative Absorption and Emission Abundance Analyses of Nebulae: Ion Emission Densities for IC 418
Recent analyses of nebular spectra have resulted in discrepantabundances from CNO forbidden and recombination lines. We considerindependent methods of determining ion abundances for emission nebulae,comparing ion emission measures with column densities derived fromresonance absorption lines viewed against the central star continuum.Separate analyses of the nebular emission lines and the stellar UVabsorption lines yield independent abundances for ions, and their ratiocan be expressed in terms of a parameterem, the ``emission density'' for eachion. Adequate data for this technique are still scarce, but separateanalyses of spectra of the planetary nebula and central star of IC 418do show discrepant abundances for several ions, especially Fe II. Thediscrepancies are probably due to the presence of absorbing gas thatdoes not emit and/or to uncertain atomic data and excitation processes,and they demonstrate the importance of applying the technique ofcombining emission- and absorption-line data in deriving abundances fornebulae.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained from the STScI, which is operated by AURA, Inc., under NASAcontract NAS 5-26555, and on observations made at CTIO/NOAO, which isoperated by AURA, Inc., under cooperative agreement with the NSF.

An analysis of the observed radio emission from planetary nebulae
We have analysed the radio fluxes for 264 planetary nebulae for whichreliable measurements of fluxes at 1.4 and 5 GHz, and of nebulardiameters are available. For many of the investigated nebulae, theoptical thickness is important, especially at 1.4 GHz. Simple modelslike the one specified only by a single optical thickness or spherical,constant density shells do not account satisfactorily for theobservations. Also an r-2 density distribution is ruled out.A reasonable representation of the observations can be obtained by atwo-component model having regions of two different values of opticalthickness. We show that the nebular diameters smaller than 10arcsec areuncertain, particularly if they come from photographic plates orGaussian fitting to the radio profile. While determining theinterstellar extinction from an optical to radio flux ratio, cautionshould be paid regarding optical thickness effects in the radio. We havedeveloped a method for estimating the value of self absorption. At 1.4GHz self absorption of the flux is usually important and can exceed afactor of 10. At 5 GHz self absorption is negligible for most of theobjects, although in some cases it can reach a factor of 2. The Galacticbulge planetary nebulae when used to calibrate the Shklovsky method givea mean nebular mass of 0.14 Msun. The statistical uncertaintyof the Shklovsky distances is smaller than a factor of 1.5. Table 1 isonly available in electronic form at http://www.edpsciences.org.

The dust content of planetary nebulae: a reappraisal
We have performed a statistical analysis using broad band IRAS data onabout 500 planetary nebulae with the aim of characterizing their dustcontent. Our approach is different from previous studies in that it usesan extensive grid of photoionization models to test the methods forderiving the dust temperature, the dust-to-gas mass ratio and theaverage grain size. In addition, we use only distance independentdiagrams. With our models, we show the effect of contamination by atomiclines in the broad band IRAS fluxes during planetary nebula evolution.We find that planetary nebulae with very different dust-to-gas massratios exist, so that the dust content is a primordial parameter for theinterpretation of far infrared data of planetary nebulae. In contrastwith previous studies, we find no evidence for a decrease in thedust-to-gas mass ratio as the planetary nebulae evolve. We also showthat the decrease in grain size advocated by Natta & Panagia(\cite{NattaPanagia}) and Lenzuni et al. (\cite{Lenzuni}) is an artefactof their method of analysis. Our results suggest that the timescale fordestruction of dust grains in planetary nebulae is larger than theirlifetime. Table~1 is only accessible in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Infrared Planetary Nebulae in the NRAO VLA Sky Survey
In order to construct a sample of planetary nebulae (PNe) unbiased bydust extinction, we first selected the 1358 sources in the IRAS PointSource Catalog north of J2000 declination delta=-40^deg having measuredS(25 μm)>=1 Jy and colors characteristic of PNe: detections orupper limits consistent with both S(12 μm)<=0.35S(25 μm) andS(25 μm)>=0.35S(60 μm). The majority are radio-quietcontaminating sources such as asymptotic giant branch stars. Free-freeemission from genuine PNe should make them radio sources. The 1.4 GHzNRAO VLA Sky Survey (NVSS) images and source catalog were used to rejectradio-quiet mid-infrared sources. We identified 454 IRAS sources withradio sources brighter than S~2.5 mJy beam^-1 (equivalent to T~0.8 K inthe 45" FHWM NVSS beam) by positional coincidence. They comprise 332known PNe in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulaeand 122 candidate PNe, most of which lie at very low Galactic latitudes.Exploratory optical spectroscopic observations suggest that most ofthese candidates are indeed PNe optically dimmed by dust extinction,although some contamination remains from H II regions, Seyfert galaxies,etc. Furthermore, the NVSS failed to detect only 4% of the known PNe inour infrared sample. Thus it appears that radio selection can greatlyimprove the reliability of PN candidate samples withoutsacrificingcompleteness.

A HUBBLE SPACE TELESCOPE Survey for Resolved Companions of Planetary Nebula Nuclei
We report the results of a Hubble Space Telescope ``snapshot'' surveyaimed at finding resolved binary companions of the central stars ofGalactic planetary nebulae (PNe). Using the the Wide Field and PlanetaryCamera and Wide Field Planetary Camera 2, we searched the fields of 113PNe for stars whose close proximity to the central star suggests aphysical association. In all, we find 10 binary nuclei that are verylikely to be physically associated and another six that are possiblebinary associations. By correcting for interstellar extinction andplacing the central stars' companions on the main sequence (or, in onecase, on the white dwarf cooling curve), we derive distances to theobjects, and thereby significantly increase the number of PNe withreliable distances. Comparison of our derived distances with thoseobtained from various statistical methods shows that all of the latterhave systematically overestimated the distances, by factors ranging upto a factor of 2 or more. We show that this error is most likely due tothe fact that the properties of our PNe with binary nuclei aresystematically different from those of PNe used heretofore to calibratestatistical methods. Specifically, our PNe tend to have lower surfacebrightnesses at the same physical radius than the traditionalcalibration objects. This difference may arise from a selection effect:the PNe in our survey are typically nearby, old nebulae, whereas most ofthe objects that calibrate statistical techniques are low-latitude, highsurface brightness, and more distant nebulae. As a result, thestatistical methods that seem to work well with samples of distant PNe,for example, those in the Galactic bulge or external galaxies, may notbe applicable to the more diverse population of local PNe. Our distancedeterminations could be improved with better knowledge of themetallicities of the individual nebulae and central stars, measurementsof proper motions and radial velocities for additional candidatecompanions, and deeper HST images of several of our new binary nuclei.

A Survey of Planetary Nebulae in the Southern Galactic Bulge
We present the results of a deep and uniform narrowband Hα imagingsurvey for planetary nebulae (PNs) in the southern Galactic bulge. Inour survey, we have found 56 new PNs and have rediscovered 45 known PNs.We have measured the radial velocities of this uniformly selected sampleand have also remeasured radial velocities for a subset of 317 PNs fromthe Acker catalog. Using the COBE/DIRBE 1.25, 2.2, and 3.5 μm images,we show that there is a similar longitude distribution of the PNs andthe COBE light in the zone of our deep survey. Also, we find that theextinction in our surveyed fields is not severe and that itsdistribution is fairly uniform. Finally, we present Hα fluxes for47 of our 56 newly discovered PNs and estimate the survey detectionlimit.

The kinematics of 867 galactic planetary nebulae
We present a compilation of radial velocities of 867 galactic planetarynebulae. Almost 900 new measurements are included. Previously publishedkinematical data are compared with the new high-resolution data toassess their accuracies. One of the largest samples in the literatureshows evidence for a systematic velocity offset. We calculate weightedaverages between all available data. Of the final values in thecatalogue, 90% have accuracies better than 20 km s(-1) . We use thiscompilation to derive kinematical parameters of the galacticdifferential rotation obtained from least-square fitting and toestablish the Disk rotation curve; we find no significal trend for thepresence of an increasing external rotation curve. We examine also therotation of the bulge; the derived curve is consistent with a linearlyincreasing rotation velocity with l: we find V_b,r=(9.9+/-1.3)l -(6.7+/-8.5) km s(-1) . A possible steeper gradient in the innermostregion is indicated. Table 2 is available in electronic form only, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Planetary Nebulae in the NRAO VLA Sky Survey
The 1.4 GHz NRAO VLA Sky Survey (NVSS) images and source catalog wereused to detect radio emission from the 885 planetary nebulae north ofJ2000 declination delta = -40 deg in the Strasbourg-ESO Catalogue ofGalactic Planetary Nebulae. We identified 680 radio sources brighterthan about S = 2.5 mJy beam-1 (equivalent to T ~ 0.8 K in the 45" FWHMNVSS beam) with planetary nebulae by coincidence with accurate opticalpositions measured from Digitized Sky Survey (DSS) images. Totalextinction coefficients c at lambda = 4861 Angstroms were calculated forthe 429 planetary nebulae with available H beta fluxes and low free-freeoptical depths at 1.4 GHz. The variation of c with Galactic latitude andlongitude is consistent with the extinction being primarily interstellarand not intrinsic.

Properties That Cannot Be Explained by the Progenitors of Planetary Nebulae
I classify a large number of planetary nebulae (458) according to theprocess that caused their progenitors to blow axisymmetrical winds. Theclassification is based primarily on the morphologies of the differentplanetary nebulae, assuming that binary companions, stellar orsubstellar, are necessary in order to have axisymmetrical mass loss onthe asymptotic giant branch. I propose four evolutionary classes,according to the binary-model hypothesis: (1) Progenitors of planetarynebula that did not interact with any companion. These amount to ~10% ofall planetary nebulae. (2) Progenitors that interact with stellarcompanions that avoided a common envelope, 11^{+2}_{-3}% of all nebulae.(3) Progenitors that interact with stellar companions via a commonenvelope phase, 23^{+11}_{-5}% of all nebulae. (4) Progenitors thatinteract with substellar (i.e., planets and brown dwarfs) companions viaa common envelope phase, 56^{+5}_{-8}% of all nebulae. In order todefine and build the different classes, I start with clarifying somerelevant terms and processes related to binary evolution. I then discusskinematical and morphological properties of planetary nebulae thatappear to require the interaction of the planetary nebula progenitorsand/or their winds with companions, stellar or substellar.

Planetary nebulae morphologies, central star masses and nebular properties.
We have constituted a sample of about 80 PN with defined morphologiesand well observed basic parameters (fluxes, angular radii, expansionvelocities and magnitudes of the central stars). For these PN, we havederived the central star masses by comparing the observed set ofparameters with those predicted by a simple evolutionary model of a PN,expanding at the same velocity as the observed one. We have thenexamined the relations between the PN morphological types and otherproperties, linked to the central star mass. Bipolar PN are shown tohave a wider distribution of central star masses than the rest of PN,and shifted towards higher values. They lie closer to the Galactic planeand tend to have larger N/O ratios. Point symmetric PN, which have notbeen much studied so far, are found to constitute an outstanding class.They show an almost perfect M_*_-v_exp_ correlation. They correspond toa rather short evolutionary stage of PN. They lie, on average, furtherfrom the Galactic plane than bipolar PN and tend to have lower N/O.Globally, PN with higher central star masses are found closer to theGalactic plane, and the observed relation between N/O and M_*_ isroughly consistent with the predictions from evolutionary models for AGBstars.

A statistical distance scale for Galactic planetary nebulae
A statistical distance scale is proposed. It is based on the correlationbetween the ionized mass and the radius and the correlation between theradio continuum surface brightness temperature and the nebular radius.The proposed statistical distance scale is an average of the twodistances obtained while using the correlation. These correlations,calibrated based on the 1`32 planetary nebulae with well-determinedindividual distances by Zhang, can reproduce not only the averagedistance of a sample of Galactic Bulge planetary nebulae exactly at thedistance to the Galactic center, but also the expected Gaussiandistribution of their distances around the Galactic center. This newdistance scale is applied to 647 Galactic planetary nebulae. It isestimated that this distance scale can be accurate on average to35%-50%. Our statistical distance scale is in good agreement with theone recently proposed by Van de Steene and Zijlstra. The correlationsfound in this study can be attributed to the fact that the core mass ofthe central stars has a very sharp distribution, strongly peaked atapprox. 0.6 solar mass. We stress that the scatter seen in thestatistical distance scale is likely to be real. The scatter is causedby the fact that the core mass distribution, although narrow andstrongly peaked, has a finite width.

On an alternative statistical distance scale for planetary nebulae. Catalog with statistical distances to planetary nebulae.
We have proposed a statistical method to determine distances toplanetary nebulae. The method is based on an empirical correlationbetween the radio-continuum brightness temperature and radius. Here wepresent a catalog of distance determinations calculated using thismethod.

Elemental abundances for a sample of southern galactic planetary nebulae.
Abstract image available at:http://adsabs.harvard.edu/abs/1994MNRAS.271..257K

A catalogue HeII 4686 line intensities in Galactic planetary nebulae.
We have compiled the intensities of the HeII 4686 lines measured inGalactic planetary nebulae. We present a few observational diagramsrelated to this parameter, and discuss them with the help of theoreticaldiagrams obtained from simple model planetary nebulae surroundingevolving central stars of various masses. We determine the hydrogen andhelium Zanstra temperature for all the objects with accurate enoughdata. We argue that, for Galactic planetary nebulae as a whole, the maincause for the Zanstra discrepancy is leakage of stellar ionizing photonsfrom the nebulae.

Confrontation of theoretical tracks for post-AGB stars with observations of planetary nebulae
We have constructed a distance-independent diagram to test publishedtheoretical tracks for the evolution of post-AGB stars by comparing themwith the Galactic planetary nebulae data base. We have found noinconsistency between observations and the set of tracks computed bySchoenberner (1981, 1983) and Bloecker & Schoenberner (1990). On theother hand, observations do not seem support the large transition timesbetween the end of the AGB superwind and the beginning of the planetarynebula ionization phase adopted in the models of Vassiliadis & Wood(1994).

The correlations between planetary nebula morphology and central star evolution
The morphology of 111 Galactic planetary nebulae has been studied inrelation to the evolutionary stage of their central stars. In order tolocate these stars on the log Teff - Log L/solar luminosityplane, we have calculated the Zanstra temperatures with the most up todate fluxes and magnitudes available in the literature. Distances to thenebulae were estimated with statistical methods. The different natureand evolutionary stages of central stars have been related to themorphologies of the surrounding nebulae in a statistical sense. We foundthat multiple shell nebulae contain stars that are at a differentevolutionary stage than those of single shell nebulae; we also foundthat bipolar and elliptical planetary nebulae very likely containcentral stars with a different mass distribution; furthermore, we buildan optical thickness sequence of morphological types.

Trace of planetary nebula evolution by distance-independent parameters
Using existing infrared and radio data on a sample of 432 planetarynebulae, we derived a number of distance-independent parameters forcomparison with evolutionary models of planetary nebulae. We find thatmany of the observed properties of planetary nebulae can be explained bycurrent central star evolutionary models, even if the time scales aresubject to significant change by a factor of up to an order ofmagnitude. Specifically, we find that the evolutionary tracks are wellseparated in the radio surface brightness-central star temperatureplane, therefore allowing us to determine the core mass of individualplanetary nebulae. We also obtain the luminosity and gravity of thecentral stars of individual nebulae, from their temperature and coremass, without relying on the distance assumptions. We find that ourresults of the core mass are in good agreement with those of Mendez etal. (1992) and Tylenda et al. (1991). A systematic, large discrepancy isfound between the luminosity found in this work and that found byGathier and Pottasch (1986).

The Correlations Between Planetary Nebula Morphology and Central Star Evolution
Abstract image available at:http://adsabs.harvard.edu/abs/1993A&A...276..463S

On the distance to Galactic planetary nebulae
The distances are determined for 145 Galactic PNe using two methods. Thedistances for a sample of 131 PNe are determined using method A, basedon the stellar mass and surface gravity. Method B, making use of thestellar luminosity, is applied to another sample of 61 PNe, of which 47are in common with those in the sample for method A. The properties ofthe central star, such as the core mass, luminosity, and surfacegravity, are inferred from the modeling of the distance-independentparameters. The results from the two methods used in this paper areconsistent with each other. A distance of 11.3 kpc is found for K648using method A of this work. This is in good agreement with the distanceof 10 kpc of its hosting globular cluster M15.

Comparison of two methods for determining the interstellar extinction of planetary nebulae
A comparison of the planetary nebulae as derived from the Balmerdecrement and from the ratio of radio and H-beta fluxes is presented onthe basis of a compilation of all the relevant radio and opticalmeasurements and a serious selection of the best data. It is shown thatthe extinction determined from the Balmer decrement is systematicallylarger than the one derived from the radio data, the slope of the (Copt,Crad) relation being about 1.2. It is argued that, for most distantplanetary nebulae, the total to selection extinction is significantlylower than 3, the value corresponding to the standard extinction law forthe interstellar medium.

A catalogue of narrow band images of planetary nebulae
The paper presents a catalog of narrow-band images of 255 planetarynebulae (PNe) taken with the 3.5 m ESO NTT, using EFOSC2, the faintobject camera, and spectrograph. The results include properties ofseveral PNe which were previously listed as unresolved, show extendedstellar objects, list several new bipolar proto-PNe, and describe a fewpreviously unknown faint haloes. A new list is presented of sizes inH-alpha and forbidden OIII images, including information on all peculiarobjects and features which have not been seen previously.

The extinction constants for galactic planetary nebulae
The extinction constants are determined from Balmer decrementmeasurements for over 900 planetary nebulae. Comparison with publishedextinction constants shows that the results from ESO are fairlyreliable. An analysis of the extinction constants derived from theBalmer decrement and from the radio/Hβ flux ratio indicates thatthe latter tends to be systematically smaller than the former forincreasing extinction. We suggest that the radio measurements ofPottasch's group probably underestimate the radio fluxes, at least forsome (faintest) objects.

A catalogue of absolute fluxes and distances of planetary nebulae
The paper presents a complete list of averaged recalibrated absoluteH-beta fluxes, global (where possible) relative He II lambda 4686fluxes, 5 GHz radio flux densities, and H-alpha/H-beta interstellarextinction constants for 778 Galactic planetary nebulae. The catalogprovides much of the fundamental data required to generate Zanstratemperatures. When data with the lowest errors are selected, the opticaland radio/optical extinctions show a peculiar correlation, with theradio values slightly high at low extinction and notably low at highextinction. The data are used, along with the best estimates of angulardiameters, to calculate Shklovsky distances according to the Daub schemeon the scale used earlier by Cahn and Kaler (1971). Use of this distancescale shows approximate equality of the death rates of optically thickand optically thin planetary nebulae. The method gives the correctdistances to the Magellanic Clouds.

Identification of IRAS point sources in Scorpio-Centaurus-Lupus
We present the results of an investigation of 184 sources selected fromthe IRAS Point Source Catalog, situated in a region of 1309 deg-squaredin Scorpio-Centaurus-Lupus. The sources satisfy flux density criteriasuited to the selection of candidate young stellar objects (YSOs),namely, high or moderate quality flux at both 25 and 60 microns, andS(12) is less than S(25). Identifications are assigned on the basis ofIRAS photometry, known associations, and the appearance of proposedoptical associations on the POSS (E, O) prints and/or SERC (J, R) films.Of the 184 sources, 62 are identified with galaxies and 39 areidentified with evolved galactic objects (main sequence stars, AGB, andpost-AGB stars, or planetary nebulae). A total of 28 sources areconfirmed as YSOs, all but two of which lie towards dark clouds. Afurther 11 sources located in the vicinity of OB stars may representcondensations of locally-heated interstellar matter. The 44 remainingsources are potentially YSOs on the basis of IRAS data, but in all casesalternative interpretations (as galaxies or evolved galactic objects)are also possible.

Strasbourg - ESO catalogue of galactic planetary nebulae. Part 1; Part 2
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Λύκος
Right ascension:16h01m21.07s
Declination:-34°32'36.6"
Apparent magnitude:99.9

Catalogs and designations:
Proper Names
NGC 2000.0NGC 6026

→ Request more catalogs and designations from VizieR