Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 92210


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Proper motions of faint ROSAT WTT stars in the Chamaeleon region
We present proper motions of 59 stars of the ROSAT All-Sky Survey (RASS)located in direction of the Chamaeleon star forming region (SFR) in themagnitude range B=5.1 - 17 mag. Proper motions of the fainter stars werenewly derived utilizing survey Schmidt plates from the GSC II platearchive and from a set of special plates taken with the ESO Schmidttelescope. The vector point diagram (VPD) indicates that the certifiedWTT stars cluster away from the region occupied by the brighterpre-main-sequence stars (PMS) in Cha I. The distance to this newassociation is estimated at ~ 100 pc, sensibly smaller than the 150 pcgenerally assumed for the SFR. This yields an upper limit of 2 km s(-1)for the velocity dispersion of this new kinematic group. The de-reddenedCM diagram of the group members suggest the WTT stars are still PMSobjects, but older (3-30 Myr) and less massive than previousdeterminations. These revised age estimates, the newly derived grouppeculiar velocity, and current distance estimates to the Cha I/II/IIIcomplex would favour in-situ formation against that predicted by highvelocity cloud models. Finally, based on a redetermination of thepeculiar motions of stars and gas, we speculate that the whole SFRoriginated from the local Orion spur as a result of more classicalmechanisms like interactions with the spiral arms. Based on observationscollected at the European Southern Observatory (Chile) and on data fromthe Hipparcos astrometry satellite. Table~1 is available only inelectronic form at the CDS via anonymous ftp at 130.79.128.5.

A study of the Chamaeleon star forming region from the ROSAT all-sky survey. I. X-ray observations and optical identifications.
We present the observations of the ROSAT all-sky survey (RASS) in thedirection of the Chamaeleon cloud complex, as well as the spectroscopicidentifications of the detected X-ray sources. The main purpose of thisidentification program was the search for low mass pre-main sequencestars. Sixteen previously known PMS stars were detected with highconfidence by ROSAT. Eight are classical T Tauri stars and eight areweak-line T Tauri stars, Seventy-seven new weak-line T Tauri stars wereidentified on the basis of the presence of strong Li λ 6707absorption, spectral type later than F0 and chromospheric emission. Wegive coordinates and count rates of the X-ray sources, and presentoptical spectra and finding charts for the sources identified opticallyas new pre-main sequence stars. Optical UBV(RI)_c_ and near-infraredJHKLM photometry for this sample of stars is also provided. In addition,6 new dKe-dMe candidates are found among the RASS sources.

Stroemgren photometry of F- and G-type stars brighter than V = 9.6. I. UVBY photometry
Within the framework of a large photometric observing program, designedto investigate the Galaxy's structure and evolution, Hβ photometryis being made for about 9000 stars. As a by-product, supplementary uvbyphotometry has been made. The results are presented in a cataloguecontaining 6924 uvby observations of 6190 stars, all south ofδ=+38deg. The overall internal rms errors of one observation(transformed to the standard system) of a program star in the interval6.5

The chemical evolution of the solar neighborhood. I - A bias-free reduction technique and data sample
The possible ways of measuring the age-metallicity relation for thegalactic disk in the neighborhood of the sun are discussed. It is shownthat the use of a field star sample chosen on the basis of effectivetemperature introduces a bias which results in a monotonic increase inthe metal abundance of the disk with time. However, if theage-metallicity relation for the disk can be shown to satisfy certaincriteria, the bias introduced in such a sample can be neglected: thegalactic disk apparently satisfies the criteria. It is concluded that asample analyzed through the use of uvby and H(beta) photometry inconjunction with a self-consistent set of theoretical isochronesprovides the least biased, most accurate estimate of the age-metallicityrelation for the disk.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Chamaleon
Right ascension:10h33m56.59s
Declination:-80°31'00.4"
Apparent magnitude:7.186
Distance:83.612 parsecs
Proper motion RA:9.2
Proper motion Dec:58.5
B-T magnitude:7.642
V-T magnitude:7.224

Catalogs and designations:
Proper Names
HD 1989HD 92210
TYCHO-2 2000TYC 9405-1434-1
USNO-A2.0USNO-A2 0075-02393659
HIPHIP 51713

→ Request more catalogs and designations from VizieR