Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 18579


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Searching for Planets in the Hyades. III. The Quest for Short-Period Planets
We have been using the Keck I High Resolution Spectrograph to search forplanetary companions in the Hyades cluster. We selected four stars fromthis sample that showed significant radial velocity variability on shorttimescales to search for short-period planetary companions. The radialvelocities of these four stars were monitored regularly with theHobby-Eberly Telescope for approximately 2 months, while sparse datawere also taken over ~4 months: we also obtained near-simultaneousphotometric observations with one of the automatic photoelectrictelescopes at Fairborn Observatory. For three of the stars, we detectphotometric variability with the same period present in the radialvelocity (vr) measurements, compatible with the expectedrotation rates for Hyades members. The fourth star continues to showvr variations and minimal photometric variability but with nosignificant periodicity. This study shows that for the three stars withperiodic behavior, a significant portion of the vrfluctuations are likely due primarily to magnetic activity modulated bystellar rotation rather than planetary companions. Using simple modelsfor the vr perturbations arising from spot and plage, wedemonstrate that both are likely to contribute to the observedvr variations. Thus, simultaneous monitoring of photometric(photospheric) and spectroscopic (chromospheric) variations is essentialfor identifying the cause of Doppler-shifted absorption lines in moreactive stars.Some data were obtained with the Hobby-Eberly Telescope (HET). The HETis operated by McDonald Observatory on behalf of The University of Texasat Austin, the Pennsylvania State University, Stanford University,Ludwig-Maximilians-Universität München, andGeorg-August-Universität Göttingen.Additional data presented herein were obtained at the W.M. KeckObservatory, which is operated as a scientific partnership among theCalifornia Institute of Technology, the University of California, andthe National Aeronautics and Space Administration (NASA). TheObservatory was made possible by the generous financial support of theW.M. Keck Foundation.

Radial velocity measurements. IV - Ground-based accompaniment to the HIPPARCOS observation program
The paper presents 396 radial velocities of stars distributed in 19fields of 4 x 4 degrees. The study employs the Fehrenbach objectiveprism method and the same measuring technique used in a previous paper(Fehrenbach et al., 1987).

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Aries
Right ascension:03h00m17.04s
Declination:+31°07'29.8"
Apparent magnitude:7.426
Distance:96.805 parsecs
Proper motion RA:35.6
Proper motion Dec:-39.7
B-T magnitude:7.919
V-T magnitude:7.467

Catalogs and designations:
Proper Names
HD 1989HD 18579
TYCHO-2 2000TYC 2339-1404-1
USNO-A2.0USNO-A2 1200-01327483
HIPHIP 14002

→ Request more catalogs and designations from VizieR