בית     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     תמונת אסטרו     האוסף     קבוצת דיון     Blog New!     שאלות נפוצות     כניסה  
→ Adopt this star  

TYC 2898-2865-1


תוכן

תמונות

הוסף תמונה שלך

DSS Images   Other Images


מאמרים קשורים

A Global Physical Model for Cepheids
We perform a global fit to ~5000 radial velocity and ~177, 000 magnitudemeasurements in 29 photometric bands covering 0.3 ?m to 8.0 ?mdistributed among 287 Galactic, Large Magellanic Cloud, and SmallMagellanic Cloud Cepheids with P > 10 days. We assume that theCepheid light curves and radial velocities are fully characterized bydistance, reddening, and time-dependent radius and temperaturevariations. We construct phase curves of radius and temperature forperiods between 10 and 100 days, which yield light-curve templates forall our photometric bands and can be easily generalized to anyadditional band. With only four to six parameters per Cepheid, dependingon the existence of velocity data and the amount of freedom in thedistance, the models have typical rms light and velocity curve residualsof 0.05 mag and 3.5 km s-1. The model derives the meanCepheid spectral energy distribution and its derivative with respect totemperature, which deviate from a blackbody in agreement with metal-lineand molecular opacity effects. We determine a mean reddening law towardthe Cepheids in our sample, which is not consistent with standardassumptions in either the optical or near-IR. Based on stellaratmosphere models, we predict the biases in distance, reddening, andtemperature determinations due to the metallicity and quantify themetallicity signature expected for our fit residuals. The observedresiduals as a function of wavelength show clear differences between theindividual galaxies, which are compatible with these predictions. Inparticular, we find that metal-poor Cepheids appear hotter. Finally, weprovide a framework for optimally selecting filters that yield thesmallest overall errors in Cepheid parameter determination or filtercombinations for suppressing or enhancing the metallicity effects ondistance determinations. We make our templates publicly available.

Galactic restrictions on iron production by various types of supernovae
We propose a statistical method for decomposition of contributions toiron production from various sources: Type II supernovae and thesubpopulations of Type Ia supernovae, prompt (their progenitors areshort-lived stars with ages lower than ˜100 Myr) and tardy (theirprogenitors are long-lived stars with ages >100 Myr). To do that, wedevelop a theory of oxygen and iron synthesis that takes into accountthe influence of the spiral arms on the amount of the above elementssynthesized by both Type II supernovae and prompt Type Ia supernovae. Inthe framework of the theory, we processed statistically the new, moreprecise, observational data on Cepheid abundances, which, as is wellknown, demonstrate non-trivial radial distributions of oxygen and ironin the Galactic disc with bends in the gradients. In our opinion, suchfine structure in the distribution of elements along the Galactic discenables one to decompose the amount of iron unambiguously into threecomponents produced by the above three sources. In addition, by means ofour statistical methods we solve this task without any preliminarysuppositions about the ratios between the proportions of ironsynthesized by the above sources.The total mass supplied to the Galactic disc during its life by alltypes of supernovae is ˜(4.0 ± 0.4) × 107M&sun;, while the mass of iron occurring in the presentinterstellar medium (ISM) is ˜(1.20 ± 0.05) ×107 M&sun;, i.e. about two thirds of iron iscontained in stars and stellar remnants.The relative proportion of iron synthesized by tardy type Ia supernovaefor the lifetime of the Galaxy is ˜35 per cent (in the present ISMthis portion is ˜50 per cent). Correspondingly, the totalproportion of iron supplied to the disc by Type II supernovae and promptType Ia supernovae is ˜65 per cent (in the present ISM thisproportion is ˜50 per cent). The above result depends slightly onthe adopted mass of oxygen and iron synthesized during one supernovaexplosion and the shape (bimodal or smooth) of the so-called delay-timedistribution function.The proportions of iron mass distributed between short-lived supernovaeare usually as follows: depending on the ejected masses of oxygen oriron during one Type II supernova event, the relative proportion of ironsupplied to the Galactic disc for its age varies in the range 12-32 percent (in the present ISM 9-25 per cent); the proportion supplied byprompt Type Ia supernovae to the Galactic disc is 33-53 per cent (in theISM 26-42 per cent).Our method also confirms that the bend in the observed slope of theoxygen radial distribution and the minimum in [O/Fe] at ˜7 kpcform in the vicinity of the location of the corotation resonance.

Near-infrared (JHK) Photometry of 131 Northern Galactic Classical Cepheids
Near-infrared photometric measurements for 131 Northern GalacticCepheids are presented. The Cepheid light curves are sampled with anaverage of 22 measurements per star fully covering the phase of eachCepheid. The J, H, and K light curves for each Cepheid were uniformlyinterpolated to find the intensity mean magnitudes within each band. Theresults are consistent within ±1% for 26 stars in common withprevious studies. This paper is the first in a projected series of twopapers which will provide additional fundamental data for Cepheids inthe Galaxy, namely, NIR photometry and line-of-sight extinction. In thecourse of this project, 93 additional variables were fortuitouslyobserved within the Cepheid program fields, 82 of which have previouslynot been identified.

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

uvby-beta Photoelectric Photometry of Cepheid Stars
We present time-series uvby-beta photometry of 41 classical Cepheidstars. A brief discussion of a comparison between the present data andprevious photometric observations is included.

Searching Beyond the Obscuring Dust Between the Cygnus- Aquila Rifts for Cepheid Tracers of the Galaxy's Spiral Arms
A campaign is described, open to participation by interested AAVSOmembers, of follow-up observations for newly-discovered Cepheidvariables in undersampled and obscured regions of the Galaxy, a primaryobjective being to use these supergiants to clarify the Galaxy’sspiral nature. Preliminary multiband photometric observations arepresented for three Cepheids discovered beyond the obscuring dustbetween the Cygnus and Aquila Rifts (40° £ l £ 50°),a region reputedly tied to a segment of the Sagittarius-Carina arm whichappears to cease unexpectedly. The data confirm the existence ofexceptional extinction along the line of sight at upwards of AV ~- 6magnitudes (d ~- 2 kpc, l ~- 47°), however, the noted paucity ofoptical spiral tracers in the region does not arise solely fromincompleteness owing to extinction. A hybrid spiral map of the Galaxycomprised of classical Cepheids, young open clusters and H II regions,and molecular clouds presents a consistent picture of the Milky Way andconfirms that the three Cepheids do not populate the main portion of theSagittarius-Carina arm, which does not emanate locally from this region.The Sagittarius-Carina arm, along with other distinct spiral features,is found to deviate from the canonical logarithmic spiral pattern.Revised parameters are also issued for the Cepheid BY Cas, and it isidentified on the spiral map as lying in the foreground to most youngassociations in Cassiopeia. A Fourier analysis of the light curve of BYCas implies overtone pulsation, and the Cepheid is probably unassociatedwith the open cluster NGC 663 since the distances, ages, and radialvelocities do not match.

Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids and interrelation of amplitudes
Context: The dependence of amplitude on the pulsation period differsfrom other Cepheid-related relationships. Aims: We attempt torevise the period-amplitude (P-A) relationship of Galactic Cepheidsbased on multi-colour photometric and radial velocity data. Reliable P-Agraphs for Galactic Cepheids constructed for the U, B, V, R_C, andIC photometric bands and pulsational radial velocityvariations facilitate investigations of previously poorly studiedinterrelations between observable amplitudes. The effects of bothbinarity and metallicity on the observed amplitude, and the dichotomybetween short- and long-period Cepheids can both be studied. Methods: A homogeneous data set was created that contains basicphysical and phenomenological properties of 369 Galactic Cepheids.Pulsation periods were revised and amplitudes were determined by theFourier method. P-A graphs were constructed and an upper envelope to thedata points was determined in each graph. Correlations between variousamplitudes and amplitude-related parameters were searched for, usingCepheids without known companions. Results: Large amplitudeCepheids with companions exhibit smaller photometric amplitudes onaverage than solitary ones, as expected, while s-Cepheids pulsate withan arbitrary (although small) amplitude. The ratio of the observedradial velocity to blue photometric amplitudes, AV_RAD/A_B,is not as good an indicator of the pulsation mode as predictedtheoretically. This may be caused by an incorrect mode assignment to anumber of small amplitude Cepheids, which are not necessarily firstovertone pulsators. The dependence of the pulsation amplitudes onwavelength is used to identify duplicity of Cepheids. More than twentystars previously classified as solitary Cepheids are now suspected tohave a companion. The ratio of photometric amplitudes observed invarious bands confirms the existence of a dichotomy among normalamplitude Cepheids. The limiting period separating short- andlong-period Cepheids is 10.47 days. Conclusions:Interdependences of pulsational amplitudes, the period dependence of theamplitude parameters, and the dichotomy have to be taken into account asconstraints in modelling the structure and pulsation of Cepheids.Studies of the P-L relationship must comply with the break at 10.47°instead of the currently used “convenient” value of 10 days.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/959

Galactic abundance gradients from Cepheids. On the iron abundance gradient around 10-12 kpc
Context: Classical Cepheids are excellent tracers of intermediate-massstars, since their distances can be estimated with very high accuracy.In particular, they can be adopted to trace the chemical evolution ofthe Galactic disk. Aims: Homogeneous iron abundance measurements for 33Galactic Cepheids located in the outer disk together with accuratedistance determinations based on near-infrared photometry are adopted toconstrain the Galactic iron gradient beyond 10 kpc. Methods: Ironabundances were determined using high resolution Cepheid spectracollected with three different observational instruments: ESPaDOnS@CFHT,Narval@TBL and FEROS@2.2m ESO/MPG telescope. Cepheid distances wereestimated using near-infrared (J,H,K-band) period-luminosity relationsand data from SAAO and the 2MASS catalog. Results: The least squaressolution over the entire data set indicates that the iron gradient inthe Galactic disk presents a slope of -0.052±0.003 textrm {dexkpc}-1 in the 5-17 kpc range. However, the change of the ironabundance across the disk seems to be better described by a linearregime inside the solar circle and a flattening of the gradient towardthe outer disk (beyond 10 kpc). In the latter region the iron gradientpresents a shallower slope, i.e. -0.012±0.014 textrm {dexkpc}-1. In the outer disk (10-12 kpc) we also found thatCepheids present an increase in the spread in iron abundance. Currentevidence indicates that the spread in metallicity depends on theGalactocentric longitude. Finally, current data do not support thehypothesis of a discontinuity in the iron gradient at Galactocentricdistances of 10-12 kpc. Conclusions: The occurrence of a spread in ironabundance as a function of the Galactocentric longitude indicates thatlinear radial gradients should be cautiously treated to constrain thechemical evolution across the disk.

Reddenings of FGK supergiants and classical Cepheids from spectroscopic data
Accurate and homogeneous atmospheric parameters(Teff,logg,Vt, [Fe/H]) are derived for 74 FGKnon-variable supergiants from high-resolution, high signal-to-noiseratio, echelle spectra. Extremely high precision for the inferredeffective temperatures (10-40K) is achieved by using the line-depthratio method. The new data are combined with atmospheric values for 164classical Cepheids, observed at 675 different pulsation phases, takenfrom our previously published studies. The derived values are correlatedwith unreddened B - V colours compiled from the literature for theinvestigated stars in order to obtain an empirical relationship of theform (B - V)0 = 57.984 -10.3587(logTeff)2 +1.67572(logTeff)3 - 3.356logg +0.0321Vt + 0.2615[Fe/H] + 0.8833(logg)(logTeff).The expression is used to estimate colour excesses E(B - V) forindividual supergiants and classical Cepheids, with a precision of+/-0.05 mag for supergiants and Cepheids with n = 1-2 spectra, reaching+/-0.025mag for Cepheids with n > 2 spectra, matching uncertaintiesfor the most sophisticated photometric techniques. The reddening scaleis also a close match to the system of space reddenings for Cepheids.The application range is for spectral types F0-K0 and luminosity classesI and II.

Photoelectric observations of Cepheids in UBV(RI)c (Berdnikov, 2008)
This catalog gathers the observation of 894 Cepheids made between 1986to 2004.Observations are listed in alphabetical order of the constellations. Thestandard deviation for every magnitude and color is 0.01mag.This version supersedes the 1997 edition (Cat. )(3 data files).

Cepheid parallaxes and the Hubble constant
Revised Hipparcos parallaxes for classical Cepheids are analysedtogether with 10 Hubble Space Telescope (HST)-based parallaxes. In areddening-free V, I relation we find that the coefficient of logP is thesame within the uncertainties in our Galaxy as in the Large MagellanicCloud (LMC), contrary to some previous suggestions. Cepheids in theinner region of NGC4258 with near solar metallicities confirm thisresult. We obtain a zero-point for the reddening-free relation and applyit to the Cepheids in galaxies used by Sandage et al. to calibrate theabsolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubbleconstant. We revise their result for H0 from 62 to 70 +/-5kms-1Mpc-1. The Freedman et al. value is revisedfrom 72 to 76 +/- 8kms-1Mpc-1. These results areinsensitive to Cepheid metallicity corrections. The Cepheids in theinner region of NGC4258 yield a modulus of 29.22 +/- 0.03 (int.)compared with a maser-based modulus of 29.29 +/- 0.15. Distance modulifor the LMC, uncorrected for any metallicity effects, are 18.52 +/- 0.03from a reddening-free relation in V, I; 18.47 +/- 0.03 from aperiod-luminosity relation at K; 18.45 +/- 0.04 from aperiod-luminosity-colour relation in J, K. Adopting a metallicitycorrection in V, I from Macri et al. leads to a true LMC modulus of18.39 +/- 0.05.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The Distribution of the Elements in the Galactic Disk
This paper reports on the spectroscopic investigation of 54 Cepheids,deriving parameters and abundances. These Cepheids extend previoussamples by about 35% in number and increase the amount of the Galacticdisk coverage, especially in the direction of l~120deg. Wefind that there exists in the Galactic disk at that longitude and at asolar distance of about 3-4 kpc a region that has enhanced abundances,~+0.2, with respect to the local region. A simple linearfit to all Cepheid data now extant yields a gradientd[Fe/H]/dRG=-0.068+/-0.003 dex kpc-1. Afterconsideration of the spatial abundance inhomogeneities in the sample, weconclude that the best current estimate of the overall gradient isd[Fe/H]/dRG=-0.06 dex kpc-1.

Galactic Cepheids. II. Lithium
We report on the discovery of two lithium Cepheids in the Galaxy, basedon observations made with the echelle spectrograph of the Apache PointObservatory. We have used high-resolution, high signal-to-noise ratiospectra to determine abundances of chemical elements in 16 classicalCepheids. Only two of our program stars show a lithium line, RX Aur andYZ Aur (RX Aur has been also classified by us as a new nonradialpulsator). For the others, including the stars with [N/C]<0.2, Li isdepleted up to logN(Li)<1.0. Hence, it appears that mixing depletesLi before stars enter the instability strip. According to stellarmodels, the main mixing event takes place when Teff dropsbelow 4000 K, which is outside the red edge of the instability strip;i.e., after stars have crossed the instability strip for the first time.

Galactic Cepheids. I. Elemental Abundances and Their Implementation for Stellar and Galactic Evolution
We have added data for 16 distant Cepheids observed with the echellespectrograph of the Apache Point 3.5 m telescope to improve thecorrelations of abundance parameters with pulsation period and distancefrom the Galactic center (RG ). While we see no importanttrends with pulsation period, some important ratios are closely relatedto the evolution of stars through the instability strip. The mostinteresting is the N/C ratio, which is predicted to be enhanced by afactor of 4 when an evolving supergiant cools to Teff=4000 Kand the outer convection zone reaches the depth at which CN processinghas converted C to N. We find a Gaussian distribution around a value of[N/C]=0.6, just as predicted. The ratio of about 30:1 mixed to unmixedstars can be taken as the ratio of evolutionary time spent on the blueloop to the time spent on the first crossing through the instabilitystrip. According to stellar models, the main mixing event takes placewhen Teff drops below 4000 K, which is outside the red edgeof the instability strip; i.e., after stars have crossed the instabilitystrip for the first time. We have confirmed previously knowncorrelations of [Fe/H] with RG. We find that [Fe/H] shows agradient of -0.06 Kpc-1. The only other significant gradientis that of [Eu/Fe], which increases with RG, thereby showingan increasing ratio of SN II/SN Ia in the outer Galaxy.

The Spectra of Type II Cepheids. III. The Hα Line and Helium Emission in Long-Period Stars
We have obtained Hα profiles from 175 spectra of 37 Cepheids withperiods longer than 8 days. About two-thirds of the stars are likelytype II Cepheids. In contrast to the situation among short-period stars,the velocity of Hα relative to the metal-line spectrum is not auseful parameter for distinguishing type I and type II Cepheids. On theother hand, at periods longer than 11 days and shorter than 34 daysstrong emission is observed in many stars and appears to be a gooddiscriminator of type. On this basis we identify one probable type ICepheid at a large distance from the Galactic plane. We have found Heλ5876 emission in seven Cepheids among the long-period starsdiscussed here and in one star with a short period, bringing to nine thenumber of type II Cepheids known to exhibit He emission.Based in part on observations obtained with the Apache Point Observatory3.5 m telescope, which is owned and operated by the AstrophysicalResearch Consortium.

Photometry of Type II Cepheids. I. The Long-Period Stars
We present 1256 new photometric observations of 36 Cepheids with periodslonger than 8 days. The majority are likely type II Cepheids, but wehave included about a dozen classical Cepheids for comparison purposes,a few stars of uncertain type, and one putative RV Tauri star. Wediscuss the appearance of the light curves, the Fourier parameters, andthe light-curve stability in terms of differentiation between type I andtype II Cepheids. Although we encounter the same difficulties asprevious investigators in using these parameters for this purpose, weare able to identify some stars of particular interest, includingseveral likely type I Cepheids at large distances from the Galacticplane. Six stars with especially large period changes are identified anddiscussed.

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

Two Period-Radius Relations for Classical Cepheids: Determining the Pulsation Mode and the Distance Scale
Not Available

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC
We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.

Direct calibration of the Cepheid period-luminosity relation
After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.

I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog
By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.

A catalog of Cepheid radial velocities measured in 1995-1998 with the correlation spectrometer
We present a catalog of 2444 original radial-velocity measurements for108 Cepheids based on the 1995-1998 observations with the correlationspectrometer. Detailed radial-velocity curves are given for 12 Cepheidsfor the first time.

The radii of 62 classical Cepheids
Based on dense series of photoelectric observations and on ourradial-velocity measurements, we calculated the radii of 62 northernCepheids by Balona's method. We derived the following period-radiusrelation: log R = 1.23(+/-0.03) + 0.62(+/-0.03) log P. Our detailedanalysis shows that the distance scale for Cepheids cannot be refinedusing their radii by an independent method which is unrelated to thedistances to young open clusters because of the random and systematicerrors of the Baade-Wesselink technique.

Monitoring the Evolution of Cepheid Variables
Described here are preliminary results of a pilot project to monitorchanges in the ephemerides of northern hemisphere Cepheid's using anSBIG camera attached to the 0.4-m telescope of the campus obversatory atSaint Mary's University. Epochs of maximum light for fifteen Cepheid'shave been derived using published light curves for each variable astemplates, and the results are being used to update the O-C ephemeridesfor the program stars. Results for BB Her are presented here. Periodchanges for Cepheid variables are demonstrated to be an excellent meansof pinpointing their evolutionary status, as well as for investigatingother peculiarities of the class.

Galactic kinematics of Cepheids from HIPPARCOS proper motions
The Hipparcos proper motions of 220 Galactic Cepheids, together withrelevant ground-based photometry, have been analyzed. The effects ofGalactic rotation are very clearly seen. Mean values of the Oortconstants, A = 14.82 +/- 0.84 km/s kpc, and B = -12.37 +/- 0.64 km/skpc, and of the angular velocity of circular rotation at the sun, 27.19+/- 0.87 km/s kpc, are derived. A comparison of the value of A withvalues derived from recent radial velocity solutions confirms, withinthe errors, the zero-points of the period-luminosity andperiod-luminosity-color relations derived directly from the Hipparcostrigonometrical parallaxes of the same stars. The proper motion resultssuggest that the Galactic rotation curve is declining slowly at thesolar distance from the Galactic Center (-2.4 +/- 1.2 km/s kpc). Thecomponent of the solar motion towards the North Galactic Pole is foundto be +7.61 +/- 0.64 km/s. Based on the increased distance scale deducedin the present paper, the distance to the Galactic Center derived in aprevious radial velocity study is increased to 8.5 +/- 0.5 kpc.

Search for resonance effects in long period Cepheids.
Light curves of classical Cepheids with period longer than 8 days havebeen Fourier decomposed with the purpose of studying the characteristicsof high order Fourier parameters, and to detect possible effects ofresonances between pulsation modes other than the well known resonanceat P~10d. The possible effects of two expected resonances have beententatively identified: P_0_/P_1_=3/2 at P_0_~24 d and P_0_/P_3_=3 atP_0_~27d. The identification is not completely certain owing to the poornumber of Cepheids. The limitation could be overcome by observingaccurately other relatively faint Cepheids in our Galaxy, and severalCepheids in nearby galaxies.

הכנס מאמר חדש


לינקים קשורים

  • - לא נמצאו לינקים -
הכנס לינק חדש


משמש של הקבוצה הבאה


תצפית ומידע אסטרומטרי

קבוצת-כוכבים:עגלון
התרוממות ימנית:04h59m41.53s
סירוב:+40°50'09.7"
גודל גלוי:10.297
תנועה נכונה:-0.8
תנועה נכונה:-2.4
B-T magnitude:11.828
V-T magnitude:10.424

קטלוגים וכינוים:
שם עצם פרטי
TYCHO-2 2000TYC 2898-2865-1
USNO-A2.0USNO-A2 1275-04107239
HIPHIP 23210

→ הזמן עוד קטלוגים וכינוים מוזיר