Főoldal     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Bejelentkezés  
→ Adopt this star  

HD 17072


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Chemical abundances in 43 metal-poor stars
We have derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe,Ni, and Ba for 43 metal-poor field stars in the solar neighbourhood,most of them subgiants or turn-off-point stars with iron abundances[Fe/H] ranging from -0.4 to -3.0. About half of this sample has not beenspectroscopically analysed in detail before. Effective temperatures wereestimated from uvby photometry, and surface gravities primarily fromHipparcos parallaxes. The analysis is differential relative to the Sun,and was carried out with plane-parallel MARCS models. Various sources oferror are discussed and found to contribute a total error of about0.1-0.2 dex for most elements, while relative abundances, such as[Ca/Fe], are most probably more accurate. For the oxygen abundances,determined in an NLTE analysis of the 7774 Å triplet lines, theerrors may be somewhat larger. We made a detailed comparison withsimilar studies and traced the reasons for the, in most cases,relatively small differences. Among the results we find that [O/Fe]possibly increases beyond [Fe/H] = -1.0, though considerably less sothan in results obtained by others from abundances based on OH lines. Wedid not trace any tendency toward strong overionization of iron, andfind the excesses, relative to Fe and the Sun, of the α elementsMg, Si, and Ca to be smaller than those of O. We discuss someindications that also the abundances of different α elementsrelative to Fe vary and the possibility that some of the scatter aroundthe trends in abundances relative to iron may be real. This may supportthe idea that the formation of Halo stars occurred in smaller systemswith different star formation rates. We verify the finding by Gratton etal. (2003b, A&A, 406, 131) that stars that do not participate in therotation of the galactic disk show a lower mean and larger spread in [α/Fe] than stars participating in the general rotation. The latterstars also seem to show some correlation between [ α/Fe] androtation speed. We trace some stars with peculiar abundances, amongthese two Ba stars, HD 17072 and HD196944, the second already known to be rich in s elements.Finally we advocate that a spectroscopic study of a larger sample ofhalo stars with well-defined selection criteria is very important, inorder to add to the very considerable efforts that various groups havealready made.

On the existence of differences in luminosity between horizontal branch stars in globular clusters and in the field
The discrepancy between a long distance-scale derived fromHipparcos-based distances to globular clusters via main-sequence fittingto local subdwarfs, and a short distance-scale derived from the absolutemagnitude of field RR Lyraes via statistical parallaxes and theBaade-Wesselink method could be accounted for whether an intrinsicdifference of about ~0.1-0.2mag was found to exist between horizontalbranch (HB) stars populating the sparse general field and the denseglobular clusters. In this paper we discuss the possible existence ofsuch a systematic difference comparing the period-shifts observed forfield and cluster RR Lyraes. Various approaches based on differentparameters and data sets for both cluster and field variables were usedin order to establish the size of such a hypothetical difference, ifany. We find that on the whole very small not significant differencesexist between the period-metallicity distributions of field and clusterRR Lyraes, thus confirming with a more quantitative approach, thequalitative conclusions by Catelan. This observational evidencetranslates into a very small difference between the horizontal branchluminosity of field and cluster stars, unless RR Lyraes in globularclusters are about 0.06Msolar more massive than field RRLyraes at same metallicity, which is to be proven.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars
We present a detailed analysis of the space motions of 1203solar-neighborhood stars with metal abundances [Fe/H]<=-0.6, on thebasis of a catalog, of metal-poor stars selected without kinematic biasrecently revised and supplemented by Beers et al. This sample, havingavailable proper motions, radial velocities, and distance estimates forstars with a wide range of metal abundances, is by far the largest suchcatalog to be assembled to date. We show that the stars in our samplewith [Fe/H]<=-2.2, which likely represent a ``pure'' halo component,are characterized by a radially elongated velocity ellipsoid(σU,σV,σW)=(141+/-11,106+/-9, 94+/-8) km s-1 and small prograde rotation=30 to 50 km s-1, consistent withprevious analysis of this sample by Beers and Sommer-Larsen based onradial velocity information alone. In contrast to the previous analysis,we find a decrease in with increasingdistance from the Galactic plane for stars that are likely to be membersof the halo population(Δ/Δ|Z|=-52+/-6 km s-1kpc-1), which may represent the signature of a dissipativelyformed flattened inner halo. Unlike essentially all previouskinematically selected catalogs, the metal-poor stars in our sampleexhibit a diverse distribution of orbital eccentricities, e, with noapparent correlation between [Fe/H] and e. This demonstrates, clearlyand convincingly, that the evidence offered in 1962 by Eggen,Lynden-Bell, & Sandage for a rapid collapse of the Galaxy, anapparent correlation between the orbital eccentricity of halo stars withmetallicity, is basically the result of their proper-motion selectionbias. However, even in our nonkinematically selected sample, we haveidentified a small concentration of high-e stars at [Fe/H]~-1.7, whichmay originate, in part, from infalling gas during the early formation ofthe Galaxy. We find no evidence for an additional thick disk componentfor stellar abundances [Fe/H]<=-2.2. The kinematics of theintermediate-abundance stars close to the Galactic plane are, in part,affected by the presence of a rapidly rotating thick disk component with ~=200 km s-1 (with a verticalvelocity gradient on the order ofΔ/Δ|Z|=-30+/-3 km s-1kpc-1) and velocity ellipsoid (σU,σV, σW)=(46+/-4, 50+/-4, 35+/-3) kms-1. The fraction of low-metallicity stars in the solarneighborhood that are members of the thick disk population is estimatedas ~10% for -2.2<[Fe/H]<=-1.7 and ~30% for -1.7<[Fe/H]<=-1.We obtain an estimate of the radial scale length of the metal-weak thickdisk of 4.5+/-0.6 kpc. We also analyze the global kinematics of thestars constituting the halo component of the Galaxy. The outer part ofthe halo, which we take to be represented by local stars on orbitsreaching more than 5 kpc from the Galactic plane, exhibits no systematicrotation. In particular, we show that previous suggestions of thepresence of a ``counter-rotating high halo'' are not supported by ouranalysis. The density distribution of the outer halo is nearly sphericaland exhibits a power-law profile that is accurately described asρ~R-3.55+/-0.13. The inner part of the halo ischaracterized by a prograde rotation and a highly flattened densitydistribution. We find no distinct boundary between the inner and outerhalo. We confirm the clumping in angular-momentum phase space of a smallnumber of local metal-poor stars noted in 1999 by Helmi et al. We alsoidentify an additional elongated feature in angular-momentum phase spaceextending from the clump to regions with high azimuthal rotation. Thenumber of members in the detected clump is not significantly increasedfrom that reported by Helmi et al., even though the total number of thesample stars we consider is almost triple that of the previousinvestigation. We conclude that the fraction of halo stars that may havearisen from the precursor object of this clump may be smaller than 10%of the present Galactic halo, as previously suggested. The implicationsof our results for the formation of the Galaxy are discussed, inparticular in the context of the currently favored cold dark mattertheory of hierarchical galaxy formation.

Distances, Ages, and Epoch of Formation of Globular Clusters
We review the results on distances and absolute ages of Galacticglobular clusters (GCs) obtained after the release of the Hipparcoscatalog. Several methods aimed at the definition of the Population IIlocal distance scale are discussed, and their results compared,exploiting new results for RR Lyraes in the Large Magellanic Cloud(LMC). We find that the so-called short distance and long distancescales may be reconciled whether or not a consistent reddening scale isadopted for Cepheids and RR Lyrae variables in the LMC. Emphasis isgiven in the paper to the discussion of distances and ages of GCsderived using Hipparcos parallaxes of local subdwarfs. We find that theselection criteria adopted to choose the local subdwarfs, as well as thesize of the corrections applied to existing systematic biases, are themain culprit for the differences found among the various independentstudies that first used Hipparcos parallaxes and the subdwarf fittingtechnique. We also caution that the absolute age of M92 (usuallyconsidered one of the oldest clusters) still remains uncertain due tothe lack of subdwarfs of comparable metallicity with accurateparallaxes. Distances and ages for the nine clusters discussed in aprevious paper by Gratton et al. are rederived using an enlarged sampleof local subdwarfs, which includes about 90% of the metal-poor dwarfswith accurate parallaxes (Δπ/π<=0.12) in the wholeHipparcos catalog. On average, our revised distance moduli are decreasedby 0.04 mag with respect to Gratton et al. The corresponding age of theGCs is t=11.5+/-2.6 Gyr, where the error bars refer to the 95%confidence range. The relation between the zero-age horizontal branch(ZAHB) absolute magnitude and metallicity for the nine program clustersturns out to beMV(ZAHB)=(0.18+/-0.09)([Fe/H]+1.5)+(0.53+/-0.12) Thanks toHipparcos the major contribution to the total error budget associatedwith the subdwarf fitting technique has been moved from parallaxes tophotometric calibrations, reddening, and metallicity scale. This totaluncertainty still amounts to about +/-0.12 mag. We then compare thecorresponding (true) LMC distance modulusμLMC=18.64+/-0.12 mag with other existing determinations.We conclude that at present the best estimate for the distance of theLMC is μLMC=18.54+/-0.03+/-0.06, suggesting that distancesfrom the subdwarf fitting method are ~1 σ too long. Consequently,our best estimate for the age of the GCs is revised to Age=12.9+/-2.9Gyr (95% confidence range). The best relation between ZAHB absolutemagnitude and metallicity isMV(ZAHB)=(0.18+/-0.09)([Fe/H]+1.5)+(0.63+/-0.07). Finally, wecompare the ages of the GCs with the cosmic star formation rate recentlydetermined by studies of the Hubble Deep Field (HDF), exploiting thedeterminations of ΩM=0.3 andΩΛ=0.7 provided by Type Ia supernovae surveys.We find that the epoch of formation of the GCs (at z~3) matches well themaximum of the star formation rate for elliptical galaxies in the HDF asdetermined by Franceschini et al. Based on data from the Hipparcosastrometry satellite.

Mixing along the red giant branch in metal-poor field stars
We have determined Li, C, N, O, Na, and Fe abundances, and12C/13C isotopic ratios for a sample of 62 fieldmetal-poor stars in the metallicity range -2<=[Fe/H]<= -1. Starswere selected in order to have accurate luminosity estimates from theliterature, so that evolutionary phases could be clearly determined foreach star. We further enlarged this dataset by adding 43 more starshaving accurate abundances for some of these elements and similarly welldefined luminosities from the literature. This large sample was used toshow that (small mass) lower-RGB stars (i.e. stars brighter than thefirst dredge-up luminosity and fainter than that of the RGB bump) haveabundances of light elements in agreement with predictions fromclassical evolutionary models: only marginal changes occur for CNOelements, while dilution within the convective envelope causes thesurface Li abundance to decrease by a factor of ~ 20. A second, distinctmixing episode occurs in most (perhaps all) small mass metal-poor starsjust after the RGB bump, when the molecular weight barrier left by themaximum inward penetration of the convective shell is canceled by theoutward expansion of the H-burning shell, in agreement with recenttheoretical predictions. In field stars, this second mixing episode onlyreaches regions of incomplete CNO burning: it causes a depletion of thesurface 12C abundance by about a factor of 2.5, and acorresponding increase in the N abundance by about a factor of 4. The12C/13C is lowered to about 6 to 10 (close to butdistinctly higher than the equilibrium value of 3.5), while practicallyall remaining Li is burnt. However an O-Na anti-correlation such astypically observed amongst globular cluster stars, is not present infield stars. None of the 29 field stars more evolved than the RGB bump(including 8 RHB stars) shows any sign of an O depletion or Naenhancement. This means that the second mixing episode is not deepenough to reach regions were ON-burning occurs in field stars. Based inpart on observations made at the ESO La Silla ObservatoryTables 1, 2, 3, 5 and 6 are available in electronic form only at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

On the determination of absolute magnitude zero-points from HIPPARCOS parallaxes
The period-luminosity (PL) relation zero-point determination fromHipparcos trigonometric parallaxes of Cepheids is contentious. It isshown that the method used by Feast & Catchpole is equivalent to astandard minimization of sum of squares, and that it is free ofLutz-Kelker bias. The same technique is applied to RR Lyrae and field HBstar data, the PL relation being replaced by a luminosity-metallicityrelation.

The Red Horizontal-Branch Star HD 17072
We summarize the results of a spectroscopic analysis of HD 17072,finding it to be a metal-poor ([Fe/H] = -1.17) red horizontal-branchstar with T_eff = 5375 K and log g = 2.4. We also derive a radialvelocity of 62.8 km s^-1. It has the best determined Hipparcostrigonometric parallax among the metal-poor field horizontal-branchstars and supports the fainter luminosities for such stars found fromstatistical parallax and Baade-Wesselink analyses, in contradiction tothe results of main-sequence fitting of metal-poor field dwarfs toglobular cluster main sequences.

The absolute magnitude of field metal-poor horizontal branch stars
Hipparcos satellite parallaxes for 22 metal-poor field horizontal branchstars with V_0<9 are used to derive their absolute magnitude. Theweighted mean value is M_V=+0.69+/-0.10 for an average metallicity of[Fe/H]=-1.41 a somewhat brighter average magnitude of M_V=+0.60+/-0.12for an average metallicity of [Fe/H]=-1.51 is obtained by eliminating HD17072, which might be on the first ascent of the giant branch ratherthan on the horizontal branch. The present values agree with thedeterminations based on proper motions and application of theBaade-Wesselink method to field RR Lyraes; they are 0.1-0.2 mag fainterthan those based on calibration of cluster distances obtained by usinglocal subdwarfs and on alternative distance calibrators for the LargeMagellanic Cloud (LMC). The possibility that there is a real differencebetween the luminosity of the horizontal branch for clusters and thefield is briefly commented on.

Globular Cluster Distances and Ages Using HIPPARCOS Subdwarfs
Not Available

The Impact of the Chemical Composition on the Distance Scales for Metal-Poor Objects
Not Available

Red Horizontal Branch and Early Asymptotic Branch Stars Near the Sun.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114.1666E&db_key=AST

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Kinematics of metal-poor stars in the galaxy
We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.

Reddening estimation for halo red giants using UVBY photometry
Updated uvby observations for a larger sample of metal-deficient redgiants are presented and combined with a select sample of data from theliterature transformed to a common system. Using the reddening maps ofBurstein & Heiles (1982), new absolute magnitudes, distances,metallicities, and reddenings are derived for each star. Themetallicities are determined with a revised calibration of them1, (b-y) diagram based upon comparison to a complilation ofrecent spectrsoscopic abundances transformed to a common system. Thephotometric abundances agree very well with the spectroscopic; thedispersion among the residuals for 58 giants is +/- 0.16 dex. Thedereddened indices are used to show that for red giants with (Fe/H) lessthan -1.5, there is a well-defined relation in the c0,(b-y)0 diagram which exhibits only a weak dependence uponmetallicity. Use of the standard relations allows one to obtainreddening estimates for normal halo field giants and globular clustersin the appropriate metallicity range.

Astrometric and astrophysical discontinuities between the galactic old disk and halo stellar populations
Intermediate band, RI, and DDO photometry of the weak-lined stars in thefirst three volumes of the Michigan catalogs of spectral type arediscussed on the basis of luminosity and heavy element abundance. Theinterface between the old disk (Fe/H greater than -0.8 dex) and halo(Fe/H less than -1.2 dex) populations represents discontinuities in boththe stellar motions and the stellar physics. The CN strengths of bothevolved and unevolved halo stars decrease with decreasing temperature,in a mirror image of the increase with decreasing temperature for thedisk objects. The result for the halo giants has been attributed to deepmixing in the stellar atmospheres but the similar result for unevolveddwarfs indicates a difference in formation rather than in evolutionaryprocess of the two populations.

The extension of the MK spectral classification system to the intermediate population II F type stars
A grid of metal-weak spectral-classification standards is used tosystematically extend the MK spectral-classification system to F-typestars of the intermediate population II. The present method allowsmetal-weak program stars to be compared with standards of similarmetallicity and effective temperature. The results demonstrate that theintermediate population II is very homogeneous. Excellent agreement isobtained between the classifications of the present extended system anduvby-beta photometric results.

Ubvy-beta photometry of high-velocity and metal-poor stars. III - Metallicities and ages of the halo stars
The interstellar color excesses, E(b-y) and the metallicities, Fe/Habundance ratio, are determined for the 711 high-velocity and metal-poorstars in the catalog of ubvy-beta photometry compiled by Schuster andNissen (1988). It is found that 220 of these are halo stars and that 15percent of these halo stars have colors that are significantly affectedby interstellar reddening. A minimum age of 18-20 Gyr is determined forthe halo stars. The results suggest that a pressure-supported slowuniform collapse controlled the formation and evolution of the Galaxy.

Four-color UVBY and H-beta photometry of high-velocity and metal-poor stars. I - The catalogue of observations
A catalog of four-color uvby and H-beta photometry for 711 high-velocityand metal-poor stars is given. The selection of the stars and theobserving and reduction techniques used to obtain these data arediscussed. The photometry has been transformed closely onto the standarduvby-beta system. The errors of the data have been estimated using bothinternal and external comparisons. The data are uniform over the sky;that is, there are no significant north-south differences. For the largemajority of stars the mean errors of V, m1, c1, and beta are less than +or - 0.008 mag, and the error of b-y is less than + or - 0.005 mag.Values of V, b-y and beta and rough photometric classifications aregiven for 63 red and/or evolved stars that fall outside the range of thephotometric transformations.

Radial velocities of bright southern stars. V - 146 Population II F stars and related stars
This paper presents new radial velocity determinations, based on 20 A/mmcoude plates, for 146 southern stars brighter than m(v) = 8.3. Drawnfrom the catalog of uvby-beta photometry of southern A5-G0 stars byOlsen (1983), the program stars are certain or suspected Population IIstars. One triple-lined and 10 double-lined binaries have been detected,including HD 210737, for which a preliminary orbit has been derived.Notes on spectral peculiarities are given.

Estimation of spectral classifications for bright southern stars with interesting Stromgren indices
This paper investigates the degree of success with which uvby photometrycan be applied to predict spectral classifications for 947 A, F, and Gstars brighter than an apparent magnitude of 8.3 and with four-colorindices indicating some kind of interesting, unusual, or peculiarspectrum. One or several possible spectral classifications are estimatedfor each star from photometry alone, double stars are distinguished, andthe estimates are compared with published classifications. The resultsshow that the framework provided by uvby photometry can be extended toinclude most G and K stars, reddened stars, peculiar stars, and certaintypes of double star.

A white-dwarf search at the south galactic pole
The Lowell Observatory G and GD stars to visual magnitude 17 and within10 deg of the south galactic pole have been observed in a modifiedStromgren photometric system. Twenty-three white dwarfs were found,including five already known, leading to a number density for these bluedegenerates of 1 per 0.001 cu pc. Forty-two of the stars are probablyhalo objects of spectral types F and G, and the remaining 23 starsinclude blue stragglers, horizontal-branch stars, and one possibleultrashort-period halo variable.

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Déli Vízikígyó
Rektaszcenzió:02h40m40.10s
Deklináció:-69°13'58.8"
Vizuális fényesség:6.595
Távolság:132.1 parszek
RA sajátmozgás:64.4
Dec sajátmozgás:-11.6
B-T magnitude:7.364
V-T magnitude:6.659

Katalógusok és elnevezések:
Megfelelő nevek
HD 1989HD 17072
TYCHO-2 2000TYC 9145-2048-1
USNO-A2.0USNO-A2 0150-01359388
HIPHIP 12485

→ További katalógusok és elnevezések lekérése VizieR-ből