Home     Sopravvivere Nell'Universo    
Services
    Perché adottare     Donatori     Astro Foto     La collezione     Forum     Blog New!     FAQ     Login  
The star is adopted or is not available for adoption  

αβ Cen (Toliman)


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

Evolution and seismology of alpha Centauri.
Solar-like oscillations detected in both components of the binary systemalpha Centauri provide strong constraints on the fundamental parametersof the stellar system. We model alpha Centauri by means of aLevenberg-Marquardt minimization algorithm including seismic andclassical constraints. Computations, that were perfomed decreasingsignificanly the weight of alpha Cen B seismic data in the calibrationprocedure, predict small separations in good agreement with newobservations of solar-like oscillations in alpha Cen B by Bedding (theseproceedings).

SONG: Stellar Oscillations Network Group . A global network of small telescopes for asteroseismology and planet searches.
One of the limiting factors in current asteroseismic investigations ofsolar type stars is the limited time coverage of single-siteobservations. To remedy this problem we are studying the design of aglobal network based on 16-24 inch telescopes equipped with fibre fedhigh-efficiency and high-resolution spectrographs and iodine cells.These will measure precise radial velocity time-series for stars inorder to carry out asteroseismic analyses and search for low-massplanets in short period orbits around our targets.

Asteroseismology of solar-type stars with CORALIE and HARPS . II: Observations and modelling of binary stars
We present here the detection and characterization of solar-likeoscillations in visual binary stars such as alpha Centauri, Procyon and70 Ophiuchi obtained with the CORALIE and HARPS spectrographs at the ESOLa Silla Observatory. The strong additional constraints resulting fromthe binary nature of the systems (same age and initial chemicalcomposition) allow us to accurately determine their global parametersand to test the physics of the models.

Asteroseismology and interferometry .
Asteroseismology aims at constraining the stellar evolution theory, andallows to determine the age of stars together with other fundamentalparameters. We present recent results obtained by interferometry, andprospects for the future.

Observing solar-like oscillations: recent results.
We review recent progress in observations of ground-based oscillations.Excellent observations now exist for a few stars (alpha Cen A{} and B,mu Ara), while there is some controversy over others (Procyon, etaBoo). We have reached the stage where single-site observations are oflimited value and where careful planning is needed to ensure the futureof asteroseismology.

Asteroseismology of solar-type stars with CORALIE and HARPS . I: Observations and modelling of single stars
We present here the detection and characterization of solar-likeoscillations in several targets such as beta Vir, eta Boo, delta Eri,chi Eri and the Am star HD 209625 obtained with the CORALIE and HARPSspectrographs based at the ESO La Silla Observatory. The measurement ofthe frequencies of p-mode oscillations provides an insight into theinternal structure and is nowadays the most powerful constraint on thetheory of stellar evolution.

Observations of solar-like oscillations and asteroseismic models including rotation .
Since the success of helioseismology, numerous efforts have been made todetect solar-like oscillations on other stars. Thanks to newspectrographs developed for extra-solar planet searches, the accuracyneeded to detect such oscillations has recently been achieved. In thispaper, we present new asteroseismic measurements obtained with theCORALIE and HARPS spectrographs as well as new theoretical analysesbased on these observations. In particular, we focus on the effects ofrotation on the modelling of solar-type stars and on its influence onthe determination of fundamental stellar parameters.

An Extended FUSE Survey of Diffuse O VI Emission in the Interstellar Medium
We present a survey of diffuse O VI emission in the interstellar medium(ISM) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE).Spanning 5.5 yr of FUSE observations, from launch through 2004 December,our data set consists of 2925 exposures along 183 sight lines, includingall of those with previously published O VI detections. The data wereprocessed using an implementation of CalFUSE version 3.1 modified tooptimize the signal-to-noise ratio and velocity scale of spectra from anaperture-filling source. Of our 183 sight lines, 73 show O VIλ1032 emission, 29 at >3 σ significance. Six of the 3σ features have velocities |vLSR|>120 kms-1, while the others have |vLSR|<=50 kms-1. Measured intensities range from 1800 to 9100 LU (lineunit; 1 photon cm-2 s-1 sr-1), with amedian of 3300 LU. Combining our results with published O VI absorptiondata, we find that an O VI-bearing interface in the local ISM yields anelectron density ne=0.2-0.3 cm-3 and a path lengthof 0.1 pc, while O VI-emitting regions associated with high-velocityclouds in the Galactic halo have densities an order of magnitude lowerand path lengths 2 orders of magnitude longer. Although the O VIintensities along these sight lines are similar, the emission isproduced by gas with very different properties.Based on observations made with the NASA-CNES-CSA Far UltravioletSpectroscopic Explorer. FUSE is operated for NASA by Johns HopkinsUniversity under NASA contract NAS5-32985.

Coronal Density Diagnostics with Si X: Chandra LETGS Observations of Procyon, α Centauri A and B, Capella, and ɛ Eridani
Electron density diagnostics based on the line intensity ratio of Si Xare applied to the X-ray spectra of Procyon, α Cen A and B,Capella, and ɛ Eri measured with the Low Energy TransmissionGrating Spectrometer combined with the High Resolution Camera on boardthe Chandra X-Ray Observatory. The ratio R1 of theintensities of the Si X lines at 50.524 and 50.691 Å is adopted. Acertain temperature effect in R1 appears near the low-densitylimit region, which is due to the contamination of the Si X line at50.703 Å. Using the emission measure distribution model derived byAudard and coworkers for Capella and emissivities calculated with theAstrophysical Plasma Emission Code model by Smith and coworkers, wesuccessfully estimate the contributions of the Fe XVI lines at 50.367and 50.576 Å (73% and 62%, respectively). A comparison between theobserved ratios and theoretical predictions constrains the (logarithmic)electron densities for Procyon to be8.61+0.24-0.20 cm-3, while for αCen A and B, Capella, and ɛ Eri they are8.81+0.27-0.23,8.60+0.39-0.32, 9.30-0.48, and9.11+1.40-0.38 cm-3, respectively. Thecomparison of our results with those constrained by the triplet ofHe-like carbon shows good agreement. For normal stars, our resultsdisplay a narrow uncertainty, while for active stars, a relativelylarger uncertainty due to contamination from Fe XVI lines is found.Another possible reason may be the uncertainty of the continuum level,since the emission lines of Si X become weak for active stars. Forɛ Eri, an electron density in the C V-forming region was firstestimated through Si X emission.

Simulating observable comets. III. Real stellar perturbers of the Oort cloud and their output
Context: .This is the third of a series of papers on simulating themechanisms acting currently on the Oort cloud and producing the observedlong-period comets.Aims.In this paper we investigate the influence ofcurrent stellar perturbers on the Oort cloud of comets under thesimultaneous galactic disk tide. We also analyse the past motion of theobserved long-period comets under the same dynamical model to verify thewidely used definition of dynamically new comets. Methods.The action ofnearby stars and the galactic disk tide on the Oort cloud was simulated.The original orbital elements of all 386 long-period comets of qualityclasses 1 and 2 were calculated, and their motion was followednumerically for one orbital revolution into the past, down to theprevious perihelion. We also simulated the output of the close futurepass of GJ 710 through the Oort cloud. Results.The simulated flux of theobservable comets resulting from the current stellar and galacticperturbations, as well as the distribution of perihelion direction, wasobtained. The same data are presented for the future passage of GJ 710.A detailed description is given of the past evolution of aphelion andperihelion distances of the observed long-period comets. Conclusions. Weobtained no fingerprints of the stellar perturbations in the simulatedflux and its directional structure. The mechanisms producing observablecomets are highly dominated by galactic disk tide because all currentstellar perturbers are too weak. Also the effect of the close passage ofthe star GJ 710 is very difficult to recognise on the background of theGalactic-driven observable comets. For the observed comets we found only45 to be really dynamically "new" according to our definition based onthe previous perihelion distance value.

Abundances of refractory elements in the atmospheres of stars with extrasolar planets
Aims.This work presents a uniform and homogeneous study of chemicalabundances of refractory elements in 101 stars with and 93 without knownplanetary companions. We carry out an in-depth investigation of theabundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The newcomparison sample, spanning the metallicity range -0.70< [Fe/H]<0.50, fills the gap that previously existed, mainly at highmetallicities, in the number of stars without known planets.Methods.Weused an enlarged set of data including new observations, especially forthe field "single" comparison stars . The line list previously studiedby other authors was improved: on average we analysed 90 spectral linesin every spectrum and carefully measured more than 16 600 equivalentwidths (EW) to calculate the abundances.Results.We investigate possibledifferences between the chemical abundances of the two groups of stars,both with and without planets. The results are globally comparable tothose obtained by other authors, and in most cases the abundance trendsof planet-host stars are very similar to those of the comparison sample.Conclusions.This work represents a step towards the comprehension ofrecently discovered planetary systems. These results could also beuseful for verifying galactic models at high metallicities andconsequently improve our knowledge of stellar nucleosynthesis andgalactic chemical evolution.

Modeling β Virginis using seismological data
This paper presents the modeling of the F9 V star βVirginis based on seismological measurements. Using the Genevaevolution code including rotation and atomic diffusion, we find that twodistinct solutions reproduce all existing asteroseismic andnon-asteroseismic observational constraints well: a main-sequence modelwith a mass of 1.28 ± 0.03~Mȯ and an age t=3.24± 0.20 Gyr, or a model in the post-main sequence phase ofevolution with a lower mass of 1.21 ± 0.02~Mȯ andan age t=4.01 ± 0.30 Gyr. The small spacings δν02 and the ratio r02 between small and largespacings are sensitive to the differences in the structure of thecentral layers between these two solutions and are also sensitive to thestructural changes due to the rotational mixing. They can therefore beused to unambiguously determine the evolutionary state ofβ Vir and to study the effects of rotation onthe inner structure of the star. Unfortunately, existing asteroseismicdata do not enable such precise determination. We also show that thescatter in frequencies introduced by the rotational splittings canaccount for the larger dispersion of the observed large spacings for thenon-radial modes than for the radial modes.

Oscillation mode lifetimes in ξ Hydrae: will strong mode damping limit asteroseismology of red giant stars?
We introduce a new method to measure frequency separations and modelifetimes of stochastically excited and damped oscillations, so-calledsolar-like oscillations. Our method shows that velocity data of the redgiant star ξ Hya (Frandsen et al. 2002) support a large frequencyseparation between modes of roughly 7~μHz. We also conclude that thedata are consistent with a mode lifetime of 2 days, which is so shortrelative to its pulsation period that none of the observed frequenciesare unambiguous. Hence, we argue that the maximum asteroseismic outputthat can be obtained from these data is an average large frequencyseparation, the oscillation amplitude and the average mode lifetime.However, the significant discrepancy between the theoreticalcalculations of the mode lifetime (Houdek & Gough 2002) and ourresult based on the observations of ξ Hya, implies that red giantstars can help us better understand the damping and driving mechanismsof solar-like p-modes by convection.

The limb darkening of α Centauri B. Matching 3D hydrodynamical models with interferometric measurements
For the nearby dwarf star α Cen B (K1 V), we presentlimb-darkening predictions from a 3D hydrodynamical radiative transfermodel of its atmosphere. We first compared the results of this model toa standard Kurucz's atmosphere. Then we used both predictions to fit thenew interferometric visibility measurements of α Cen B obtainedwith the VINCI instrument of the VLT Interferometer. Part of these newvisibility measurements were obtained in the second lobe of thevisibility function, which is sensitive to stellar limb-darkening. Thebest agreement is found for the 3D atmosphere limb-darkening model and alimb-darkened angular diameter of θ_3D = 6.000± 0.021 mas,corresponding to a linear radius of 0.863 ± 0.003 R_ȯ(assuming π = 747.1 ± 1.2 mas). Our new linear radius agreeswell with the asteroseismic value predicted by Thévenin et al.(2002, A&A, 392, L9). In view of future observations of this starwith the VLTI/AMBER instrument, we also present limb-darkeningpredictions in the J, H, and K bands.

Oxygen abundances in planet-harbouring stars. Comparison of different abundance indicators
We present a detailed and uniform study of oxygen abundances in 155solar type stars, 96 of which are planet hosts and 59 of which form partof a volume-limited comparison sample with no known planets. EWmeasurements were carried out for the [O I] 6300 Å line and the OI triplet, and spectral synthesis was performed for several OH lines.NLTE corrections were calculated and applied to the LTE abundanceresults derived from the O I 7771-5 Å triplet. Abundances from [OI], the O I triplet and near-UV OH were obtained in 103, 87 and 77dwarfs, respectively. We present the first detailed and uniformcomparison of these three oxygen indicators in a large sample ofsolar-type stars. There is good agreement between the [O/H] ratios fromforbidden and OH lines, while the NLTE triplet shows a systematicallylower abundance. We found that discrepancies between OH, [O I] and the OI triplet do not exceed 0.2 dex in most cases. We have studied abundancetrends in planet host and comparison sample stars, and no obviousanomalies related to the presence of planets have been detected. Allthree indicators show that, on average, [O/Fe] decreases with [Fe/H] inthe metallicity range -0.8< [Fe/H] < 0.5. The planet host starspresent an average oxygen overabundance of 0.1-0.2 dex with respect tothe comparison sample.

High-Resolution Spectroscopy of some Active Southern Stars
High-resolution échelle spectra of 42 nearby southern solar-typestars have been obtained, in a search for young, single, active, andrapidly rotating sun-like stars suitable for Doppler imaging and ZeemanDoppler imaging studies. As a result of this survey, 13 stars weredetermined to be youthful with ages less than 600Myr (Hyades age) andeight of these were found to have projected rotational velocities inexcess of 15kms-1. In addition, five spectroscopic binarysystems were identified. Of those stars observed for this survey, HD106506 is the most outstanding target for mapping active regions. It isan apparently young and single star with rapid rotation (v sin i~80kms-1), strong Hα chromospheric activity (logR'Hα~-4.2), and deformation of the spectral lineprofiles indicating the presence of large starspots.

Recent astrophysical results from the VLTI.
Not Available

The light curve of the semiregular variable L2 Puppis - II. Evidence for solar-like excitation of the oscillations
We analyse visual observations of the pulsations of the red giantvariable L2 Puppis (L2 Pup). The data cover 77 yrbetween 1927 and 2005, thus providing an extensive empirical base forcharacterizing properties of the oscillations. The power spectrum of thelight curve shows a single mode resolved into multiple peaks under anarrow envelope. We argue that this results from stochastic excitation,as seen in solar oscillations, with a mode lifetime of about 5 yr. Therandom fluctuations in phase also support this idea. A comparison with XCam, a true Mira star with the same pulsation period, and W Cyg, a truesemiregular star, illustrates the basic differences in phase behaviours.The Mira shows very stable phase, consistent with excitation by theκ-mechanism, whereas W Cyg shows large phase fluctuations thatimply stochastic excitation. We find L2 Pup to beintermediate, implying that both mechanisms play a role in itspulsation. Finally, we also checked the presence of low-dimensionalchaos and could safely exclude it.

Circumstellar and circumbinary discs in eccentric stellar binaries
We explore test particle orbits in the orbital plane of eccentricstellar binary systems, searching for `invariant loops': closed curvesthat change shape periodically as a function of binary orbital phase asthe test particles in them move under the gravity of the stars. Stableinvariant loops play the same role in this periodically varyingpotential as stable periodic orbits do in stationary potentials; inparticular, when dissipation is weak, gas will most likely follow thenon-intersecting loops, while nearby particle orbits librate aroundthem. We use this method to set bounds on the sizes of discs around thestars, and on the gap between those and the inner edge of a possiblecircumbinary disc. Gas dynamics may impose further restrictions, but ourstudy sets upper bounds for the size of circumstellar discs, and a lowerbound for the inner radius of a circumbinary disc. We find thatcircumstellar discs are sharply reduced as the eccentricity of thebinary grows. For the disc around the secondary star, the tidal (Jacobi)radius calculated for circular orbits at the periastron radius gives agood estimate of the maximum size. Discs change in size and shape onlymarginally with the binary phase, with no strong preference to increaseor decrease at any particular phase. The circumstellar discs inparticular can be quite asymmetric. We compare our results with othernumerical and theoretical results and with observations of the αCentauri and L1551 systems, finding very good agreement. The calculatedchanges in the shapes and crowding of the circumstellar orbits can beused to predict how the disc luminosity and mass inflow should vary withbinary phase.

Predicting accurate stellar angular diameters by the near-infrared surface brightness technique
I report on the capabilities of the near-infrared (near-IR) surfacebrightness technique to predict reliable stellar angular diameters asaccurate as <~2 per cent using standard broad-band Johnson photometryin the colour range -0.1 <= (V-K)O<= 3.7 includingstars of A, F, G, K spectral type. This empirical approach is fast toapply and leads to estimated photometric diameters in very goodagreement with recent high-precision interferometric diametermeasurements available for non-variable dwarfs and giants, as well asfor Cepheid variables. Then I compare semi-empirical diameters predictedby model-dependent photometric and spectrophotometric (SP) methods withnear-IR surface brightness diameters adopted as empirical referencecalibrators. The overall agreement between all these methods is withinapproximately +/-5 per cent, confirming previous works. However, on thesame scale of accuracy, there is also evidence for systematic shiftspresumably as a result of an incorrect representation of the stellareffective temperature in the model-dependent results. I also comparemeasurements of spectroscopic radii with near-IR surface brightnessradii of Cepheids with known distances. Spectroscopic radii are found tobe affected by a scatter as significant as >~9 per cent, which is atleast three times greater than the formal error currently claimed by thespectroscopic technique. In contrast, pulsation radii predicted by theperiod-radius (PR) relation according to the Cepheid period result aresignificantly less dispersed, indicating a quite small scatter as aresult of the finite width of the Cepheid instability strip, as expectedfrom pulsation theory. The resulting low level of noise stronglyconfirms our previous claims that the pulsation parallaxes are the mostaccurate empirical distances presently available for Galactic andextragalactic Cepheids.

The use of frequency-separation ratios for asteroseismology
The systematic patterns of separations between frequencies of modes ofdifferent degree and order are a characteristic of p-mode oscillationsof stars. The frequency separations depend on the internal structure ofthe star and so measuring them in the observed oscillation spectra ofvariable stars gives valuable diagnostics of the interior of a star.Roxburgh & Vorontsov proposed using the ratio of the so-called smallfrequency separation to the large frequency separation as a diagnosticof the stellar interior, and demonstrated that this ratio was lesssensitive than the individual frequency separations themselves touncertain details of the near-surface structure. Here we derive kernelsrelating the frequency separation ratio to structure, and show why theratio is relatively insensitive to the near-surface structure in termsof the very small amplitude of the kernels in the near-surface layers.We also investigate the behaviour of the separation ratio for stars ofdifferent masses and ages, and demonstrate the usefulness of the ratioin the so-called asteroseismic Hertzsprung-Russell diagram.

Asterosismologie.
Not Available

Excitation of Solar-like Oscillations: From PMS to MS Stellar Models
The amplitude of solar-like oscillations results from a balance betweenexcitation and damping. As in the sun, the excitation is attributed toturbulent motions that stochastically excite the p modes in theupper-most part of the convective zone. We present here a model for theexcitation mechanism. Comparisons between modeled amplitudes and helioand stellar seismic constraints are presented and the discrepanciesdiscussed. Finally the possibility and the interest of detecting suchstochastically excited modes in pre-main sequence stars are alsodiscussed.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Stellar Lyα Emission Lines in the Hubble Space Telescope Archive: Intrinsic Line Fluxes and Absorption from the Heliosphere and Astrospheres
We search the Hubble Space Telescope (HST) archive for previouslyunanalyzed observations of stellar H I Lyα emission lines, ourprimary purpose being to look for new detections of Lyα absorptionfrom the outer heliosphere and to also search for analogous absorptionfrom the astrospheres surrounding the observed stars. The astrosphericabsorption is of particular interest because it can be used to studysolar-like stellar winds that are otherwise undetectable. We find andanalyze 33 HST Lyα spectra in the archive. All the spectra weretaken with the E140M grating of the Space Telescope Imaging Spectrograph(STIS) instrument on board HST. The HST STIS spectra yield four newdetections of heliospheric absorption (70 Oph, ξ Boo, 61 Vir, and HD165185) and seven new detections of astrospheric absorption (EV Lac, 70Oph, ξ Boo, 61 Vir, δ Eri, HD 128987, and DK UMa), doubling theprevious number of heliospheric and astrospheric detections. Whencombined with previous results, 10 of 17 lines of sight within 10 pcyield detections of astrospheric absorption. This high detectionfraction implies that most of the ISM within 10 pc must be at leastpartially neutral, since the presence of H I within the ISM surroundingthe observed star is necessary for an astrospheric detection. Incontrast, the detection percentage is only 9.7% (3 out of 31) for starsbeyond 10 pc. Our Lyα analyses provide measurements of ISM H I andD I column densities for all 33 lines of sight, and we discuss someimplications of these results. Finally, we measure chromosphericLyα fluxes from the observed stars. We use these fluxes todetermine how Lyα flux correlates with coronal X-ray andchromospheric Mg II emission, and we also study how Lyα emissiondepends on stellar rotation.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS5-26555.

Solar-like Oscillations in α Centauri B
We have made velocity observations of the star α Centauri B fromtwo sites, allowing us to identify 37 oscillation modes with l=0-3.Fitting to these modes gives the large and small frequency separationsas a function of frequency. The mode lifetime, as measured from thescatter of the oscillation frequencies about a smooth trend, is similarto that in the Sun. Limited observations of the star δ Pav showoscillations centered at 2.3 mHz, with peak amplitudes close to solar.We introduce a new method of measuring oscillation amplitudes fromheavily smoothed power density spectra, from which we estimatedamplitudes for α Cen α and B, β Hyi, δ Pav, andthe Sun. We point out that the oscillation amplitudes may depend onwhich spectral lines are used for the velocity measurements.Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Programme 71.D-0618).

The Effective Temperature Scale of FGK Stars. II. Teff:Color:[Fe/H] Calibrations
We present up-to-date metallicity-dependent temperature versus colorcalibrations for main-sequence and giant stars based on temperaturesderived with the infrared flux method (IRFM). Seventeen colors in thephotometric systems UBV, uvby, Vilnius, Geneva, RI(Cousins), DDO,Hipparcos-Tycho, and Two Micron All Sky Survey (2MASS) have beencalibrated. The spectral types covered by the calibrations range from F0to K5 (7000K>~Teff>~4000K) with some relationsextending below 4000 K or up to 8000 K. Most of the calibrations arevalid in the metallicity range -3.5>~[Fe/H]>~0.4, although some ofthem extend to as low as [Fe/H]~-4.0. All fits to the data have beenperformed with more than 100 stars; standard deviations range from 30 to120 K. Fits were carefully performed and corrected to eliminate thesmall systematic errors introduced by the calibration formulae. Tablesof colors as a function of Teff and [Fe/H] are provided. Thiswork is largely based on the study by A. Alonso and collaborators; thus,our relations do not significantly differ from theirs except for thevery metal-poor hot stars. From the calibrations, the temperatures of 44dwarf and giant stars with direct temperatures available are obtained.The comparison with direct temperatures confirms our finding in Paper Ithat the zero point of the IRFM temperature scale is in agreement, tothe 10 K level, with the absolute temperature scale (that based onstellar angular diameters) within the ranges of atmospheric parameterscovered by those 44 stars. The colors of the Sun are derived from thepresent IRFM Teff scale and they compare well with those offive solar analogs. It is shown that if the IRFM Teff scaleaccurately reproduces the temperatures of very metal-poor stars,systematic errors of the order of 200 K, introduced by the assumption of(V-K) being completely metallicity independent when studying verymetal-poor dwarf stars, are no longer acceptable. Comparisons with otherTeff scales, both empirical and theoretical, are also shownto be in reasonable agreement with our results, although it seems thatboth Kurucz and MARCS synthetic colors fail to predict the detailedmetallicity dependence, given that for [Fe/H]=-2.0, differences as highas approximately +/-200 K are found.

The Effective Temperature Scale of FGK Stars. I. Determination of Temperatures and Angular Diameters with the Infrared Flux Method
The infrared flux method (IRFM) has been applied to a sample of 135dwarf and 36 giant stars covering the following regions of theatmospheric parameter space: (1) the metal-rich ([Fe/H]>~0) end(consisting mostly of planet-hosting stars), (2) the cool(Teff<~5000 K) metal-poor (-1<~[Fe/H]<~-3) dwarfregion, and (3) the very metal-poor ([Fe/H]<~-2.5) end. These starswere especially selected to cover gaps in previous works onTeff versus color relations, particularly the IRFMTeff scale of A. Alonso and collaborators. Our IRFMimplementation was largely based on the Alonso et al. study (absoluteinfrared flux calibration, bolometric flux calibration, etc.) with theaim of extending the ranges of applicability of their Teffversus color calibrations. In addition, in order to improve the internalaccuracy of the IRFM Teff scale, we recomputed thetemperatures of almost all stars from the Alonso et al. work usingupdated input data. The updated temperatures do not significantly differfrom the original ones, with few exceptions, leaving the Teffscale of Alonso et al. mostly unchanged. Including the stars withupdated temperatures, a large sample of 580 dwarf and 470 giant stars(in the field and in clusters), which cover the ranges3600K<~Teff<~8000K and -4.0<~[Fe/H]<~+0.5, haveTeff homogeneously determined with the IRFM. The meanuncertainty of the temperatures derived is 75 K for dwarfs and 60 K forgiants, which is about 1.3% at solar temperature and 4500 K,respectively. It is shown that the IRFM temperatures are reliable in anabsolute scale given the consistency of the angular diameters resultingfrom the IRFM with those measured by long baseline interferometry, lunaroccultation, and transit observations. Using the measured angulardiameters and bolometric fluxes, a comparison is made between IRFM anddirect temperatures, which shows excellent agreement, with the meandifference being less than 10 K for giants and about 20 K for dwarfstars (the IRFM temperatures being larger in both cases). This resultwas obtained for giants in the ranges 3800K

Single-Visit Photometric and Obscurational Completeness
We report a method that uses ``completeness'' to estimate the number ofextrasolar planets discovered by an observing program with adirect-imaging instrument. We develop a completeness function forEarth-like planets on ``habitable'' orbits for an instrument with acentral field obscuration, uniform sensitivity in an annular detectionzone, and limiting sensitivity that is expressed as a ``deltamagnitude'' with respect to the star, determined by systematic effects(given adequate exposure time). We demonstrate our method of estimationby applying it to our understanding of the coronagraphic version of theTerrestrial Planet Finder (TPF-C) mission as of 2004 October. Weestablish an initial relationship between the size, quality, andstability of the instrument's optics and its ability to meet missionscience requirements. We provide options for increasing the fidelity andversatility of the models on which our method is based, and we discusshow the method could be extended to model the TPF-C mission as a wholeto verify that its design can meet the science requirements.

Three Low-Mass Planets from the Anglo-Australian Planet Search
We report the detection of three new low-mass planets from theAnglo-Australian Planet Search. The three parent stars of these planetsare chromospherically quiet main-sequence G dwarfs with metallicitiesranging from roughly solar (HD 117618 and HD 208487) to metal enriched(HD 102117). The orbital periods range from 20.8 to 130 days, theminimum masses from roughly 0.5MSat to 0.5MJup,and the eccentricities from 0.08 to 0.37, with the planet in thesmallest orbit (HD 102117) having the smallest eccentricity. Withsemiamplitudes of 10.6-19 m s-1, these planets induce Doppleramplitudes similar to those of Jupiter analogs, albeit with shorterperiods. Many of the most interesting future Doppler planets will bedetected at these semiamplitude levels, placing a premium on measurementprecision. The detection of such amplitudes in data extending back 6 yrgives confidence in the Anglo-Australian Planet Search's ability todetect Jupiter analogs as our time baseline extends to 12 yr. We discussthe criticality of such detections for the design of the next generationof extremely large telescopes and also highlight prospects for suitableobserving strategies to push to below 1 m s-1 precisions forbright stars in a search for sub-Neptunian planets.Based on observations obtained at the Anglo-Australian Telescope, SidingSpring, Australia.

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Centauro
Ascensione retta:14h39m36.10s
Declinazione:-60°50'08.0"
Magnitudine apparente:1.33
Distanza:1.347 parsec

Cataloghi e designazioni:
Nomi esattiToliman
Bayerαβ Cen
HD 1989HD 128621
BSC 1991HR 5460

→ Richiesta di ulteriori cataloghi da VizieR