To Survive in the Universe    
Services
    Why to Adopt     Top Contributors     천체사진     컬렉션     포럼     Blog New!     질문및답변     로그인  
→ Adopt this star  

HD 177336 (V Aquilae)


내용

사진

사진 업로드

DSS Images   Other Images


관련 글

Challenging the Carbon Star Dust Condensation Sequence: Anarchist C Stars
There have been several investigations of the evolution of themid-infrared (IR) dust features in carbon star spectra based on IRAS LRSdata, but these studies are somewhat contradictory. In order tounderstand these differences in interpretations and to develop anunderstanding of the carbon star dust sequence, we have reexamined 26IRAS LRS spectra of carbon stars that have also been observedspectroscopically by ISO SWS. The low resolution and narrow wavelengthcoverage of the IRAS LRS data hinder determination of the effect ofmolecular absorptions in these spectra. This has led to incorrectestimations of the continuum levels in these spectra, which has a hugeeffect on the continuum-divided and continuum-subtracted spectra used toanalyze trends in the shape, strength, and position of the mid-IRfeatures. The higher resolution and broader wavelength coverage of theISO data allow more accurate fitting of the underlying continuum. Wehave reassessed the trends in shape, strength, and position of the ~11μm silicon carbide (SiC) feature and the apparent emergence of the ~9μm feature. We find that there are no correlations between thespectral parameters. We also investigate whether any of these parameterscorrelate with the strength of the molecular bands; no correlation wasfound. Moreover, we show that the apparent 9 μm feature is probablyan artifact. We discuss the implications of this study in terms of botha carbon star condensation sequence and the application of this study tothe larger IRAS data set.

First Surface-resolved Results with the Infrared Optical Telescope Array Imaging Interferometer: Detection of Asymmetries in Asymptotic Giant Branch Stars
We have measured nonzero closure phases for about 29% of our sample of56 nearby asymptotic giant branch (AGB) stars, using the three-telescopeInfrared Optical Telescope Array (IOTA) interferometer at near-infraredwavelengths (H band) and with angular resolutions in the range 5-10 mas.These nonzero closure phases can only be generated by asymmetricbrightness distributions of the target stars or their surroundings. Wediscuss how these results were obtained and how they might beinterpreted in terms of structures on or near the target stars. We alsoreport measured angular sizes and hypothesize that most Mira stars wouldshow detectable asymmetry if observed with adequate angular resolution.

Optical Spectropolarimetry of Asymptotic Giant Branch and Post-Asymptotic Giant Branch Stars
Spectropolarimetric observations are presented for 21 AGB stars, 13proto-planetary nebulae (PPNs), and two R CrB-type stars. The spectracover the wavelength range from ~4200 to 8400 Å with 16 Åresolution. Among the AGB stars, 8 of 14 M giants, five of six carbonstars, and zero of one S star showed intrinsic polarization. At least 9of 13 PPNs exhibited intrinsic polarization, while the R CrB-type starsshow intrinsic polarization during fading episodes. There is astatistical correlation between mean polarization,

, and IRcolor, K-[12], among the AGB stars such that redder stars tend to bemore polarized. The PPN sample is significantly redder and morepolarized, on average, than the AGB stars. This increase in

with increased reddening is consistent with an evolutionary sequence inwhich AGB stars undergo increasing mass loss, with growing asymmetriesin the dust distribution as they evolve up and then off the AGB into theshort-lived PPN phase. A related trend is found between polarization andmass-loss rate in gas, M˙gas. The detectability ofpolarization increases with mass-loss rate, and probably all AGB starslosing mass at >10-6 Msolar yr-1have detectable polarization. Multiple observations of three polarizedAGB stars show that in some cases

increases withmV, and in others it decreases. If polarization arises fromscattering of starlight off an aysmmetric distribution of grains, thenthe distribution varies with time. Polarized features are detected inthe TiO bands of three M-type Mira variables, in the CN bands of thecarbon stars R Lep and V384 Per, and in the Swan bands of C2in R CrB and two PPNs. Polarization effects in the molecular bandsappear to be more common and the effects are larger in O-rich thanC-rich objects.

Multi-aperture photometry of extended IR sources with ISOPHOT. I. The nature of extended IR emission of planetary Nebulae
Context: .ISOPHOT multi-aperture photometry is an efficient method toresolve compact sources or to detect extended emission down torelatively faint levels with single detectors in the wavelength range 3to 100 μm. Aims: .Using ISOPHOT multi-aperture photometry andcomplementary ISO spectra and IR spectral energy distributions wediscuss the nature of the extended IR emission of the two PNe NGC 6543and NGC 7008. Methods: .In the on-line appendix we describe thedata reduction, calibration and interpretation methods based on asimultaneous determination of the IR source and background contributionsfrom the on-source multi-aperture sequences. Normalized profiles enabledirect comparison with point source and flat-sky references. Modellingthe intensity distribution offers a quantitative method to assess sourceextent and angular scales of the main structures and is helpful inreconstructing the total source flux, if the source extends beyond aradius of 1 arcmin. The photometric calibration is described and typicalaccuracies are derived. General uncertainty, quality and reliabilityissues are addressed, too. Transient fitting to non-stabilised signaltime series, by means of combinations of exponential functions withdifferent time constants, improves the actual average signals andreduces their uncertainty. Results: .The emission of NGC 6543 inthe 3.6 μm band coincides with the core region of the optical nebulaand is homogeneously distributed. It is comprised of 65% continuum and35% atomic hydrogen line emission. In the 12 μm band a resolved butcompact double source is surrounded by a fainter ring structure with allemission confined to the optical core region. Strong line emission of[ArIII] at 8.99 μm and in particular [SIV] at 10.51 μm shapes thisspatial profile. The unresolved 60 μm emission originates from dust.It is described by a modified (emissivity index β = 1.5) blackbodywith a temperature of 85 K, suggesting that warm dust with a mass of 6.4× 10-4 Mȯ is mixed with the ionisedgas. The gas-to-dust mass ratio is about 220. The 25 μm emission ofNGC 7008 is characterised by a FWHM of about 50´´ with anadditional spot-like or ring-like enhancement at the bright rim of theoptical nebula. The 60 μm emission exhibits a similar shape, but isabout twice as extended. Analysis of the spectral energy distributionsuggests that the 25 μm emission is associated with 120 K warm dust,while the 60 μm emission is dominated by a second dust component with55 K. The dust mass associated with this latter component amounts to 1.2× 10-3 Mȯ, significantly higher thanpreviously derived. The gas-to-dust mass ratio is 59 which, compared tothe average value of 160 for the Milky Way, hints at dust enrichment bythis object.

Infrared photometry and evolution of mass-losing AGB stars. I. Carbon stars revisited
As part of a reanalysis of galactic Asymptotic Giant Branch (AGB) starsat infrared (IR) wavelengths, we discuss a sample (357) of carbon starsfor which mass loss rates, near-IR photometry and distance estimatesexist. For 252 sources we collected mid-IR fluxes from the MSX (6C) andthe ISO-SWS catalogues. Most stars have spectral energy distributions upto 21 μm, and some (1/3) up to 45 μm. This wide wavelengthcoverage allows us to obtain reliable bolometric magnitudes. Theproperties of our sample are discussed with emphasis on ~70 stars withastrometric distances. We show that mid-IR fluxes are crucial toestimate the magnitude of stars with dusty envelopes. We construct HRdiagrams and show that the luminosities agree fairly well with modelpredictions based on the Schwarzschild's criterion, contrary to what iswidely argued in the literature. A problem with the brightness of Cstars does not appear to exist. From the relative number of Mira andSemiregular C-variables, we argue that the switch between these classesis unlikely to be connected to thermal pulses. The relevance of the twopopulations varies with the evolution, with Miras dominating the finalstages. We also analyze mass loss rates, which increase for increasingluminosity, but with a spread that probably results from a dependence ona number of parameters (like e.g. different stellar masses and differentmechanisms powering stellar winds). Instead, mass loss rates are wellmonitored by IR colours, especially if extended to 20 μm and beyond,where AGB envelopes behave like black bodies. From these colours theevolutionary status of various classes of C stars is discussed.

Forty Years of Spectroscopic Stellar Astrophysics in Japan
The development of Japanese spectroscopic stellar astrophysics in therecent 40 years is reviewed from an observational point of view. In thisarticle, the research activities are provisionally divided into fourfields: hot stars, hot emission-line (Be) stars, cool stars, and otherstars. Historical developments of the observational facilities atOkayama Astrophysical Observatory (spectrographs and detectors) are alsosummarized in connection with the progress in scientific researchactivities.

Three-micron spectra of AGB stars and supergiants in nearby galaxies
The dependence of stellar molecular bands on the metallicity is studiedusing infrared L-band spectra of AGB stars (both carbon-rich andoxygen-rich) and M-type supergiants in the Large and Small MagellanicClouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. Thespectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CHand HCN bands for carbon-rich AGB stars. The equivalent width ofacetylene is found to be high even at low metallicity. The high C2H2abundance can be explained with a high carbon-to-oxygen (C/O) ratio forlower metallicity carbon stars. In contrast, the HCN equivalent width islow: fewer than half of the extra-galactic carbon stars show the 3.5μm HCN band, and only a few LMC stars show high HCN equivalent width.HCN abundances are limited by both nitrogen and carbon elementalabundances. The amount of synthesized nitrogen depends on the initialmass, and stars with high luminosity (i.e. high initial mass) could havea high HCN abundance. CH bands are found in both the extra-galactic andGalactic carbon stars. One SMC post-AGB star, SMC-S2, shows the 3.3μm PAH band. This first detection of a PAH band from an SMC post-AGBstar confirms PAHs can form in these low-metallicity stars. None of theoxygen-rich LMC stars show SiO bands, except one possible detection in alow quality spectrum. The limits on the equivalent widths of the SiObands are below the expectation of up to 30 Å for LMC metallicity.Several possible explanations are discussed, mostly based on the effectof pulsation and circumstellar dust. The observations imply that LMC andSMC carbon stars could reach mass-loss rates as high as their Galacticcounterparts, because there are more carbon atoms available and morecarbonaceous dust can be formed. On the other hand, the lack of SiOsuggests less dust and lower mass-loss rates in low-metallicityoxygen-rich stars. The effect on the ISM dust enrichment is discussed.

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

The mass loss of C-rich giants
The mass loss rates, expansion velocities and dust-to-gas density ratiosfrom millimetric observations of 119 carbon-rich giants are compared, asfunctions of stellar parameters, to the predictions of recenthydrodynamical models. Distances and luminosities previously estimatedfrom HIPPARCOS data, masses from pulsations and C/O abundance ratiosfrom spectroscopy, and effective temperatures from a new homogeneousscale, are used. Predicted and observed mass loss rates agree fairlywell, as functions of effective temperature. The signature of the massrange M≤4 Mȯ of most carbon-rich AGB stars is seenas a flat portion in the diagram of mass loss rate vs. effectivetemperature. It is flanked by two regions of mass loss rates increasingwith decreasing effective temperature at nearly constant stellar mass.Four stars with detached shells, i.e. episodic strong mass loss, andfive cool infrared carbon-rich stars with optically-thick dust shells,have mass loss rates much larger than predicted values. The latter(including CW Leo) could be stars of smaller masses (M≃ 1.5-2.5Mȯ) while M≃ 4 Mȯ is indicated formost of the coolest objects. Among the carbon stars with detachedshells, R Scl returned to a predicted level (16 times lower) accordingto recent measurements of the central source. The observed expansionvelocities are in agreement with the predicted velocities at infinity ina diagram of velocities vs. effective temperature, provided the carbonto oxygen abundance ratio is 1≤ɛ C/ɛO≤2, i.e. the range deduced from spectra and modelatmospheres of those cool variables. Five stars with detached shellsdisplay expansion velocities about twice that predicted at theireffective temperature. Miras and non-Miras do populate the same locus inboth diagrams at the present accuracy. The predicted dust-to-gas densityratios are however about 2.2 times smaller than the values estimatedfrom observations. Recent drift models can contribute to minimize thediscrepancy since they include more dust. Simple approximate formulaeare proposed.This research has made use of the Simbad database operated at CDS.Partially based on data from the ESA HIPPARCOS astrometry satellite.Table 3 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/235

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

Molecular and dust features of 29 SiC carbon AGB stars
We have reduced and analyzed the Infrared Space Observatory (ISO)Short-Wavelength Spectrometer (SWS) spectra of 29 infrared carbon starswith a silicon carbide feature at 11.30 μm, 17 of which have not beenpreviously published. Absorption or emission features of C2,HCN, C2H2, C3 and silicon carbide (SiC)have been identified in all 17 unpublished carbon stars. In addition,two unidentified absorption features at 3.50 and 3.65 μm are listedfor the first time in this paper. We classify these 29 carbon stars intogroups A, B, C and D according to the shapes of their spectral energydistribution, and this classification seems to show an evolutionarysequence of carbon stars with an SiC feature. Moreover we have found thefollowing results for the different groups: on average, the relativeintegrated flux of the 3.05 μm C2H2+HCNabsorption feature increases gradually from group A to B and C; that ofthe 5.20 μm C3 absorption feature becomes gradually weakerfrom group A to B and C; that of the 11.30 μm SiC emission featureincreases gradually from group A to B and C but weakens in group D; andin contrast, that of the 13.70 μm C2H2absorption feature weakens gradually from group A to B and C but becomesstronger in group D. We suggest that the evolution of the IR spectra ofcarbon stars along the sequence A to D is a result of the followingphenomena: as the near-IR black-body temperature (Tnir)decreases, the circumstellar envelope becomes thicker; also theeffective temperature (Teff) of the photosphere of thecentral star decreases gradually and the C/O ratio increases from A toB.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) with the participation of ISAS and NASA.

Infrared investigation from earth and space on the evolutionary state of a sample of LPV
We selected a sample of highly reddened AGB stars among the sourcesobserved with the SWS instrument on the ISO satellite. These SWS dataallow us to compute the source's photometry in the mid-IR filters of thecamera TIRCAM at the TIRGO telescope. Our photometric data, supplementedwith other measurements taken from the literature, permit to select thecarbon-rich sources in the sample. For these stars, a linear relationholds between dust mass loss and the color index [8.8]-[12.5]. One maythen, from photometric data alone, evaluate the total mass loss (forwhich we used the estimate of \citet{loup}, based on radio data). Theoxygen-rich sources, on the other hand, are distributed in two branches,of which the upper one appears superimposed with carbon stars; the starsin this group have both high luminosity and high wind velocity andtherefore higher masses. Finally S stars lie between the carbon-starbranch and the low-mass oxygen-rich stars, in agreement with theirintermediate evolutionary status.

On the Origin of Long Secondary Periods in Semiregular Variables
The presence of a long secondary period (LSP) in the light curves ofsome local semiregular variables has been known for many years.Furthermore, the LSPs have recently been found in the light curves ofapproximately 25% of the semiregular variables in the LMC. Theytypically have a length of ~500-4000 days, some 5-15 times longer thanthe primary period. Binarity, pulsation, periodic dust ejection, androtation have been suggested as the origin of the LSPs. Here we analyzeechelle spectra of a group of local semiregular variables with LSPs(hereafter LSPVs) in order to try to distinguish between thesesuggestions. In general, we find that LSPVs do not have broader spectralfeatures than semiregulars without a long secondary period (hereafternon-LSPVs). The general upper limit on the equatorial rotation velocityof 3 km s-1 rules out rotating spot and similar models. OneLSPV, V Hya, does have broader spectral lines than similar carbon stars,but it is shown here that rotation alone is not a good model forexplaining the broad lines. Mid-infrared colors of LSPs and non-LSPVsare similar and there are no LSPVs showing the large (60-25) μm IRAScolor exhibited by some R Coronae Borealis (RCB) stars. Thus, there isno evidence for periodic dust ejection from LSPVs. Finally, we find thatthe LSPVs show larger radial velocity variations than non-LSPVs, whichsuggests that LSPs are caused either by binarity or by pulsation. Asimilar conclusion was derived by Hinkle and co-workers.

Reprocessing the Hipparcos data of evolved stars. III. Revised Hipparcos period-luminosity relationship for galactic long-period variable stars
We analyze the K band luminosities of a sample of galactic long-periodvariables using parallaxes measured by the Hipparcos mission. Theparallaxes are in most cases re-computed from the Hipparcos IntermediateAstrometric Data using improved astrometric fits and chromaticitycorrections. The K band magnitudes are taken from the literature andfrom measurements by COBE, and are corrected for interstellar andcircumstellar extinction. The sample contains stars of several spectraltypes: M, S and C, and of several variability classes: Mira, semiregularSRa, and SRb. We find that the distribution of stars in theperiod-luminosity plane is independent of circumstellar chemistry, butthat the different variability types have different P-L distributions.Both the Mira variables and the SRb variables have reasonablywell-defined period-luminosity relationships, but with very differentslopes. The SRa variables are distributed between the two classes,suggesting that they are a mixture of Miras and SRb, rather than aseparate class of stars. New period-luminosity relationships are derivedbased on our revised Hipparcos parallaxes. The Miras show a similarperiod-luminosity relationship to that found for Large Magellanic CloudMiras by Feast et al. (\cite{Feast-1989:a}). The maximum absolute Kmagnitude of the sample is about -8.2 for both Miras and semi-regularstars, only slightly fainter than the expected AGB limit. We show thatthe stars with the longest periods (P>400 d) have high mass lossrates and are almost all Mira variables.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA \cite{Hipparcos}).Table \ref{Tab:data1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/993

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

s-Process Nucleosynthesis in Carbon Stars
We present the first detailed and homogeneous analysis of the s-elementcontent in Galactic carbon stars of N type. Abundances of Sr, Y, Zr(low-mass s-elements, or ls), Ba, La, Nd, Sm, and Ce (high-masss-elements, or hs) are derived using the spectral synthesis techniquefrom high-resolution spectra. The N stars analyzed are of nearly solarmetallicity and show moderate s-element enhancements, similar to thosefound in S stars, but smaller than those found in the only previoussimilar study (Utsumi 1985), and also smaller than those found insupergiant post-asymptotic giant branch (post-AGB) stars. This is inagreement with the present understanding of the envelope s-elementenrichment in giant stars, which is increasing along the spectralsequence M-->MS-->S-->SC-->C during the AGB phase. Wecompare the observational data with recent s-process nucleosynthesismodels for different metallicities and stellar masses. Good agreement isobtained between low-mass AGB star models (M<~3 Msolar)and s-element observations. In low-mass AGB stars, the13C(α, n)16O reaction is the main source ofneutrons for the s-process a moderate spread, however, must exist in theabundance of 13C that is burnt in different stars. Bycombining information deriving from the detection of Tc, the infraredcolors, and the theoretical relations between stellar mass, metallicity,and the final C/O ratio, we conclude that most (or maybe all) of the Nstars studied in this work are intrinsic, thermally pulsing AGB stars;their abundances are the consequence of the operation of third dredge-upand are not to be ascribed to mass transfer in binary systems.

Carbon-rich giants in the HR diagram and their luminosity function
The luminosity function (LF) of nearly 300 Galactic carbon giants isderived. Adding BaII giants and various related objects, about 370objects are located in the RGB and AGB portions of the theoretical HRdiagram. As intermediate steps, (1) bolometric corrections arecalibrated against selected intrinsic color indices; (2) the diagram ofphotometric coefficients 1/2 vs. astrometric trueparallaxes varpi are interpreted in terms of ranges of photosphericradii for every photometric group; (3) coefficients CR andCL for bias-free evaluation of mean photospheric radii andmean luminosities are computed. The LF of Galactic carbon giantsexhibits two maxima corresponding to the HC-stars of the thick disk andto the CV-stars of the old thin disk respectively. It is discussed andcompared to those of carbon stars in the Magellanic Clouds and Galacticbulge. The HC-part is similar to the LF of the Galactic bulge,reinforcing the idea that the Bulge and the thick disk are part of thesame dynamical component. The CV-part looks similar to the LF of theLarge Magellanic Cloud (LMC), but the former is wider due to thesubstantial errors on HIPPARCOS parallaxes. The obtained meanluminosities increase with increasing radii and decreasing effectivetemperatures, along the HC-CV sequence of photometric groups, except forHC0, the earliest one. This trend illustrates the RGB- and AGB-tracks oflow- and intermediate-mass stars for a range in metallicities. From acomparison with theoretical tracks in the HR diagram, the initial massesMi range from about 0.8 to 4.0 Msun for carbongiants, with possibly larger masses for a few extreme objects. A largerange of metallicities is likely, from metal-poor HC-stars classified asCH stars on the grounds of their spectra (a spheroidal component), tonear-solar compositions of many CV-stars. Technetium-rich carbon giantsare brighter than the lower limit Mbol =~ -3.6+/- 0.4 andcentered at =~-4.7+0.6-0.9 at about =~(2935+/-200) K or CV3-CV4 in our classification. Much like the resultsof Van Eck et al. (\cite{vaneck98}) for S stars, this confirms theTDU-model of those TP-AGB stars. This is not the case of the HC-stars inthe thick disk, with >~ 3400 K and>~ -3.4. The faint HC1 and HC2-stars( =~ -1.1+0.7-1.0) arefound slightly brighter than the BaII giants ( =~-0.3+/-1.3) on average. Most RCB variables and HdC stars range fromMbol =~ -1 to -4 against -0.2 to -2.4 for those of the threepopulation II Cepheids in the sample. The former stars show the largestluminosities ( <~ -4 at the highest effectivetemperatures (6500-7500 K), close to the Mbol =~ -5 value forthe hot LMC RCB-stars (W Men and HV 5637). A full discussion of theresults is postponed to a companion paper on pulsation modes andpulsation masses of carbon-rich long period variables (LPVs; Paper IV,present issue). This research has made use of the Simbad databaseoperated at CDS, Strasbourg, France. Partially based on data from theESA HIPPARCOS astrometry satellite. Table 2 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/967

The carrier of the ``30'' mu m emission feature in evolved stars. A simple model using magnesium sulfide
We present 2-45 mu m spectra of a large sample of carbon-rich evolvedstars in order to study the ``30'' mu m feature. We find the ``30'' mu mfeature in a wide range of sources: low mass loss carbon stars, extremecarbon-stars, post-AGB objects and planetary nebulae. We extract theprofiles from the sources by using a simple systematic approach to modelthe continuum. We find large variations in the wavelength and width ofthe extracted profiles of the ``30'' mu m feature. We modelled the wholerange of profiles in a simple way by using magnesium sulfide (MgS) dustgrains with a MgS grain temperature different from the continuumtemperature. The systematic change in peak positions can be explained bycooling of MgS grains as the star evolves off the AGB. In severalsources we find that a residual emission excess at ~ 26 mu m can also befitted using MgS grains but with a different grains shape distribution.The profiles of the ``30'' mu m feature in planetary nebulae arenarrower than our simple MgS model predicts. We discuss the possiblereasons for this difference. We find a sample of warm carbon-stars withvery cold MgS grains. We discuss possible causes for this phenomenon. Wefind no evidence for rapid destruction of MgS during the planetarynebula phase and conclude that the MgS may survive to be incorporated inthe ISM. Based on observations obtained with ISO, an ESA project withinstruments funded by ESA Member states (especially the PI countries:France, Germany, The Netherlands and the United Kingdom) with theparticipation of ISAS and NASA. Appendix A (Figs. A.1 and A.2) is onlyavailable in electronic form at http://www.edpsciences.org

CHARM: A Catalog of High Angular Resolution Measurements
The Catalog of High Angular Resolution Measurements (CHARM) includesmost of the measurements obtained by the techniques of lunaroccultations and long-baseline interferometry at visual and infraredwavelengths, which have appeared in the literature or have otherwisebeen made public until mid-2001. A total of 2432 measurements of 1625sources are included, along with extensive auxiliary information. Inparticular, visual and infrared photometry is included for almost allthe sources. This has been partly extracted from currently availablecatalogs, and partly obtained specifically for CHARM. The main aim is toprovide a compilation of sources which could be used as calibrators orfor science verification purposes by the new generation of largeground-based facilities such as the ESO Very Large Interferometer andthe Keck Interferometer. The Catalog is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/386/492, and from theauthors on CD-Rom.

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veraenderliche Sterne e.V.
Not Available

General Catalog of Galactic Carbon Stars by C. B. Stephenson. Third Edition
The catalog is an updated and revised version of Stephenson's Catalogueof Galactic Cool Carbon Stars (2nd edition). It includes 6891 entries.For each star the following information is given: equatorial (2000.0)and galactic coordinates, blue, visual and infrared magnitudes, spectralclassification, references, designations in the most significantcatalogs and coordinate precision classes. The main catalog issupplemented by remarks containing information for which there was noplace in entries of the main part, as well as some occasional notesabout the peculiarities of specific stars.

The 85Kr s-Process Branching and the Mass of Carbon Stars
We present new spectroscopic observations for a sample of C(N)-type redgiants. These objects belong to the class of asymptotic giant branchstars, experiencing thermal instabilities in the He-burning shell(thermal pulses). Mixing episodes called third dredge-up enrich thephotosphere with newly synthesized 12C in the He-rich zone,and this is the source of the high observed ratio between carbon andoxygen (C/O>=1 by number). Our spectroscopic abundance estimatesconfirm that, in agreement with the general understanding of the lateevolutionary stages of low- and intermediate-mass stars, carbonenrichment is accompanied by the appearance of s-process elements in thephotosphere. We discuss the details of the observations and of thederived abundances, focusing in particular on rubidium, a neutrondensity sensitive element, and on the s-elements Sr, Y, and Zr belongingto the first s-peak. The critical reaction branching at 85Kr,which determines the relative enrichment of the studied species, isdiscussed. Subsequently, we compare our data with recent models fors-processing in thermally pulsing asymptotic giant branch stars, atmetallicities relevant for our sample. A remarkable agreement betweenmodel predictions and observations is found. Thanks to the differentneutron density prevailing in low- and intermediate-mass stars,comparison with the models allows us to conclude that most C(N) starsare of low mass (M<~3 Msolar). We also analyze the12C/13C ratios measured, showing that most of themcannot be explained by canonical stellar models. We discuss how thisfact would require the operation of an ad hoc additional mixing,currently called cool bottom process, operating only in low-mass starsduring the first ascent of the red giant branch and, perhaps, alsoduring the asymptotic giant branch.

Long period variable stars: galactic populations and infrared luminosity calibrations
In this paper HIPPARCOS astrometric and kinematic data are used tocalibrate both infrared luminosities and kinematical parameters of LongPeriod Variable stars (LPVs). Individual absolute K and IRAS 12 and 25luminosities of 800 LPVs are determined and made available in electronicform. The estimated mean kinematics is analyzed in terms of galacticpopulations. LPVs are found to belong to galactic populations rangingfrom the thin disk to the extended disk. An age range and a lower limitof the initial mass is given for stars of each population. A differenceof 1.3 mag in K for the upper limit of the Asymptotic Giant Branch isfound between the disk and old disk galactic populations, confirming itsdependence on the mass in the main sequence. LPVs with a thin envelopeare distinguished using the estimated mean IRAS luminosities. The levelof attraction (in the classification sense) of each group for the usualclassifying parameters of LPVs (variability and spectral types) isexamined. Table only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/968 or via ASTRIDdatabase (http://astrid.graal.univ-montp2.fr).

The effective temperatures of carbon-rich stars
We evaluate effective temperatures of 390 carbon-rich stars. Theinterstellar extinction on their lines of sights was determined andcircumstellar contributions derived. The intrinsic (dereddened) spectralenergy distributions (SEDs) are classified into 14 photometric groups(HCi, CVj and SCV with i=0,5 and j=1,7). The newscale of effective temperatures proposed here is calibrated on the 54angular diameters (measured on 52 stars) available at present from lunaroccultations and interferometry. The brightness distribution on stellardiscs and its influence on diameter evaluations are discussed. Theeffective temperatures directly deduced from those diameters correlatewith the classification into photometric groups, despite the large errorbars on diameters. The main parameter of our photometric classificationis thus effective temperature. Our photometric < k right >1/2 coefficients are shown to be angular diameters on arelative scale for a given photometric group, (more precisely for agiven effective temperature). The angular diameters are consistent withthe photometric data previously shown to be consistent with the trueparallaxes from HIPPARCOS observations (Knapik, et al. \cite{knapik98},Sect. 6). Provisional effective temperatures, as constrained by asuccessful comparison of dereddened SEDs from observations to modelatmosphere predictions, are in good agreement with the values directlycalculated from the observed angular diameters and with those deducedfrom five selected intrinsic color indices. These three approaches wereused to calibrate a reference angular diameter Phi 0 and theassociated coefficient CT_eff. The effective temperatureproposed for each star is the arithmetic mean of two estimates, one(``bolometric'') from a reference integrated flux F0, theother (``spectral'') from calibrated color indices which arerepresentative of SED shapes. Effective temperatures for about 390carbon stars are provided on this new homogeneous scale, together withvalues for some stars classified with oxygen-type SEDs with a total of438 SEDs (410 stars) studied. Apparent bolometric magnitudes are given.Objects with strong infrared excesses and optically thick circumstellardust shells are discussed separately. The new effective temperaturescale is shown to be compatible and (statistically) consistent with thesample of direct values from the observed angular diameters. Theeffective temperatures are confirmed to be higher than the mean colortemperatures (from 140 to 440 K). They are in good agreement with thepublished estimates from the infrared flux method forTeff>= 3170 K, while an increasing discrepancy is observedtoward lower temperatures. As an illustration of the efficiency of thephotometric classification and effective temperature scale, the C/Oratios and the Merrill-Sanford (M-S) band intensities are investigated.It is shown that the maximum value, mean value and dispersion of C/Oincrease along the photometric CV-sequence, i.e. with decreasingeffective temperature. The M-S bands of SiC2 are shown tohave a transition from ``none'' to ``strong'' at Teff =~(2800+/- 150right ) K. Simultaneously, with decreasing effectivetemperature, the mean C/O ratio increases from 1.04 to 1.36, thetransition in SiC2 strength occurring while 1.07<= C/O<= 1.18. This research has made use of the Simbad database operatedat CDS, Strasbourg, France. Table 10 is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)}or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/369/178

Models of circumstellar molecular radio line emission. Mass loss rates for a sample of bright carbon stars
Using a detailed radiative transfer analysis, combined with an energybalance equation for the gas, we have performed extensive modelling ofcircumstellar CO radio line emission from a large sample of opticallybright carbon stars, originally observed by Olofsson et al. (ApJS, 87,267). Some new observational results are presented here. We determinesome of the basic parameters that characterize circumstellar envelopes(CSEs), e.g., the stellar mass loss rate, the gas expansion velocity,and the kinetic temperature structure of the gas. Assuming a sphericallysymmetric CSE with a smooth gas density distribution, created by acontinuous mass loss, which expands with a constant velocity we are ableto model reasonably well 61 of our 69 sample stars. The derived massloss rates depend crucially on the assumptions in the circumstellarmodel, of which some can be constrained if enough observational dataexist. Therefore, a reliable mass loss rate determination for anindividual star requires, in addition to a detailed radiative transferanalysis, good observational constraints in the form of multi-lineobservations and radial brightness distributions. In our analysis we usethe results of a model for the photodissociation of circumstellar CO byMamon et al. (1988). This leads to model fits to observed radialbrightness profiles that are, in general, very good, but there are alsoa few cases with clear deviations, which suggest departures from asimple r-2 density law. The derived mass loss rates spanalmost four orders of magnitude, from ~ 5 10-9Msun yr-1 up to ~ 2 10-5Msun yr-1, with the median mass loss rate being ~3 10-7 Msun yr-1. We estimate that themass loss rates are typically accurate to ~ 50% within the adoptedcircumstellar model. The physical conditions prevailing in the CSEs varyconsiderably over such a large range of mass loss rates. Among otherthings, it appears that the dust-to-gas mass ratio and/or the dustproperties change with the mass loss rate. We find that the mass lossrate and the gas expansion velocity are well correlated, and that bothof them clearly depend on the pulsational period and (with largerscatter) the stellar luminosity. Moreover, the mass loss rate correlatesweakly with the stellar effective temperature, in the sense that thecooler stars tend to have higher mass loss rates, but there seems to beno correlation with the stellar C/O-ratio. We conclude that the massloss rate increases with increased regular pulsation and/or luminosity,and that the expansion velocity increases as an effect of increasingmass loss rate (for low mass loss rates) and luminosity. Five, of theremaining eight, sample stars have detached CSEs in the form ofgeometrically thin CO shells. The present mass loss rates and shellmasses of these sources are estimated. Finally, in three cases weencounter problems using our model. For two of these sources there areindications of significant departures from overall spherical symmetry ofthe CSEs. Carbon stars on the AGB are probably important in returningprocessed gas to the ISM. We estimate that carbon stars of the typeconsidered here annually return ~ 0.05 Msun of gas to theGalaxy, but more extreme carbon stars may contribute an order ofmagnitude more. However, as for the total carbon budget of the Galaxy,carbon stars appear to be of only minor importance. Presented in thispaper is observational data collected using the Swedish-ESOsubmillimetre telescope, La Silla, Chile, the 20\,m telescope at OnsalaSpace Observatory, Chalmers Tekniska Högskola, Sweden, and the NRAO12\,m telescope located at Kitt Peak, USA.}

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Modeling of C stars with core/mantle grains: Amorphous carbon + SiC
A set of 45 dust envelopes of carbon stars has been modeled. Among them,34 were selected according to their dust envelope class (as suggested bySloan et al. \cite{Sloan98}) and 11 are extreme carbon stars. The modelswere performed using a code that describes the radiative transfer indust envelopes considering core/mantle grains composed by an alpha -SiCcore and an amorphous carbon (A.C.) mantle. In addition, we have alsocomputed models with a code that considers two kinds of grains - alpha-SiC and A.C. - simultaneously. Core-mantle grains seem to fit dustenvelopes of evolved carbon stars, while two homogeneous grains are moreable to reproduce thinner dust envelopes. Our results suggest that thereexists an evolution of dust grains in the carbon star sequence. In thebeginning of the sequence, grains are mainly composed of SiC andamorphous carbon; with dust envelope evolution, carbon grains are coatedin SiC. This phenomena could perhaps explain the small quantity of SiCgrains observed in the interstellar medium. However, in this work weconsider only alpha -SiC grains, and the inclusion of beta -SiC grainscan perhaps change some of these results.

The 12C/13C-ratio in cool carbon stars
We present observations of circumstellar millimetre-wave 13COline emission towards a sample of 20 cool carbon stars. Using a detailedradiative transfer model we estimate the circumstellar12CO/13CO-ratios, which we believe accuratelymeasure the important stellar 12C/13C-ratios. Forthose optically bright carbon stars where it is possible, our derived12C/13C-ratios are compared with the photosphericresults, obtained with different methods. Our estimates agree well withthose of Lambert et al. \citeyearpar{Lambert86}. It is shown that astraightforward determination of the12CO/13CO-ratio from observed line intensityratios is often hampered by optical depth effects, and that a detailedradiative transfer analysis is needed in order to determine reliableisotope ratios. Presented in this paper is observational data collectedusing the Swedish-ESO submillimetre telescope, La Silla, Chile, the 20 mtelescope at Onsala Space Observatory, Chalmers Tekniska Högskola,Sweden, and the NRAO 12 m telescope located at Kitt Peak, USA.

On the distance and mass-loss rate of carbon stars showing the silicon carbide emission feature
The distances and the mass-loss rates of carbon stars are in generalvery poorly known. The various estimates of the distances, taken fromthe general literature, show considerable discrepancies, while theevaluations of the mass-loss rates can be in error by more than an orderof magnitude. In this work we have evaluated these two important stellarparameters for a previously selected sample of 55 carbon stars showingthe 11.3 mu m band, commonly attributed to silicon carbide (SiC) grains.To perform the calculation we have used the values of geometrical andphysical parameters of these sources obtained from the best fits oftheir observed spectra. Using the distance values derived in this wayand the 11.3 mu m band intensity, we have evaluated the absolute bandstrength and we have found that, in agreement with other authors, thereis a correlation between this quantity and the mass-loss rate. Thiscorrelation can be very useful to determine the mass-loss rate of othercarbon stars not included in our sample, by means of the intensity ofthe SiC band, without using the usual technique based on COobservations. The same procedure can be conveniently applied to the sameas well as to other carbon stars, whose spectra will be available to thecommunity in the next future (i.e. the infrared spectra of sourcesobserved by the Infrared Satellite Observatory, ISO).

Elemental abundances of carbon, nitrogen, and oxygen in carbon stars
The elemental abundances of carbon, nitrogen, and oxygen in three carbonstars (TX Psc, V Aql, andBL Ori) are determined from high-resolution infraredspectra in a self-consistent manner, with the dependence of theatmospheric structure on the chemical composition fully taken intoaccount. For this purpose, we have constructed a grid of line-blanketedmodel atmospheres using a revised Band Model opacity. The derivedcarbon, nitrogen, and oxygen abundances show good agreement with theresult obtained by Lambert et al. (\cite{lambert86}) in most cases. Thedifferences between the two groups are typically within 0.1 dex, whichis remarkable for abundance analyses, especially for very cool stars.Since our model atmospheres and the method of the analysis areindependent of their work, this result lends a support to theconsistency of the analyses by the both groups. However, accuratedetermination of C/O ratio has turned out to be extremely difficult. TheC/O ratios which are derived even with the same stellar parameters withthose adopted by Lambert et al. (\cite{lambert86}) are somewhat largerthan their results: 1.07 (TX Psc), 1.47 (V Aql), and 1.07 (BL Ori),while their results are 1.027 (TX Psc), 1.25 (V Aql), and 1.039 (BLOri). Moreover, the resulting abundances are rather sensitive to theeffective temperature and the surface gravity. It is possible that theeffective temperature scale is higher by 100 - 200 K than that Lambertet al. (\cite{lambert86}) adopted, and in that case, C/O ratios in threestars become still systematically higher than those derived by Lambertet al. (\cite{lambert86}), showing a contrast to their conclusion thatthe majority of carbon stars have C/O ratios rather close to 1. In fact,the C/O ratios derived here are 1.17 (TX Psc), 1.74 (V Aql), and 1.19(BL Ori). A decrease of the surface gravity from log g = 0.0 to -0.5also leads to an increase of C/O ratio by 10%. In other words, given theuncertainties of stellar parameters and molecular data in addition tointernal errors, it is still difficult to determine C/O ratios withinaccuracy of 10%, which can be translated to a difference between C/O =1.02 and 1.1. The 12C/13C ratios in N-type carbonstars derived in our previous analysis have been revised with the newmodel grid. The 12C/13C ratios in three stars haveturned out to be 31 (TX Psc), 74 (V Aql), and 35 (BL Ori), larger byabout 40% than those we obtained previously. And the C/O ratios and the12C/13C ratios derived here fall within the rangepredicted by the addition of 12C to the atmosphere of K and Mgiants. It supports the scenario in which K and M giants evolve tocarbon stars as 12C synthesized in the thermal pulse isdredged-up. Table~1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

새 글 등록


관련 링크

  • - 링크가 없습니다. -
새 링크 등록


다음 그룹에 속해있음:


관측 및 측정 데이터

별자리:독수리자리
적경:19h04m24.20s
적위:-05°41'06.0"
가시등급:6.9
거리:370.37 파섹
적경상의 고유운동:6.9
적위상의 고유운동:0.5
B-T magnitude:11.894
V-T magnitude:7.186

천체목록:
일반명V Aquilae
HD 1989HD 177336
TYCHO-2 2000TYC 5140-3199-1
USNO-A2.0USNO-A2 0825-14295677
BSC 1991HR 7220
HIPHIP 93666

→ VizieR에서 더 많은 목록을 가져옵니다.