Inici     Sobreviure a l'Univers    
Services
    Per que Habitar     Millors Contribuents     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Login  
→ Adopt this star  

TYC 3148-315-1


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

On the Application of Wesenheit Function in Deriving Distance to Galactic Cepheids
In this paper, we explore the possibility of using the Wesenheitfunction to derive individual distances to Galactic Cepheids, as thedispersion of the reddening-free Wesenheit function is smaller than theoptical period-luminosity (P-L) relation. When compared to the distancesfrom various methods, the averaged differences between our results andpublished distances range from -0.061 to 0.009, suggesting thatthe Wesenheit function can be used to derive individual Cepheiddistances. We have also constructed Galactic P-L relations and selectedWesenheit functions based on the derived distances. A by-product fromthis work is the derivation of Large Magellanic Cloud distance moduluswhen calibrating the Wesenheit function. It is found to be 18.531± 0.043 mag.

The Kepler characterization of the variability among A- and F-type stars. I. General overview
Context. The Kepler spacecraft is providing time series of photometricdata with micromagnitude precision for hundreds of A-F type stars. Aims: We present a first general characterization of the pulsationalbehaviour of A-F type stars as observed in the Kepler light curves of asample of 750 candidate A-F type stars, and observationally investigatethe relation between ? Doradus (? Dor), ? Scuti(? Sct), and hybrid stars. Methods: We compile a databaseof physical parameters for the sample stars from the literature and newground-based observations. We analyse the Kepler light curve of eachstar and extract the pulsational frequencies using different frequencyanalysis methods. We construct two new observables, "energy" and"efficiency", related to the driving energy of the pulsation mode andthe convective efficiency of the outer convective zone, respectively. Results: We propose three main groups to describe the observedvariety in pulsating A-F type stars: ? Dor, ? Sct, andhybrid stars. We assign 63% of our sample to one of the three groups,and identify the remaining part as rotationally modulated/active stars,binaries, stars of different spectral type, or stars that show no clearperiodic variability. 23% of the stars (171 stars) are hybrid stars,which is a much higher fraction than what has been observed before. Wecharacterize for the first time a large number of A-F type stars (475stars) in terms of number of detected frequencies, frequency range, andtypical pulsation amplitudes. The majority of hybrid stars showfrequencies with all kinds of periodicities within the ? Dor and? Sct range, also between 5 and 10 d-1, which is achallenge for the current models. We find indications for the existenceof ? Sct and ? Dor stars beyond the edges of the currentobservational instability strips. The hybrid stars occupy the entireregion within the ? Sct and ? Dor instability strips andbeyond. Non-variable stars seem to exist within the instability strips.The location of ? Dor and ? Sct classes in the(Teff, log g)-diagram has been extended. We investigate twonewly constructed variables, "efficiency" and "energy", as a means toexplore the relation between ? Dor and ? Sct stars. Conclusions: Our results suggest a revision of the current observationalinstability strips of ? Sct and ? Dor stars and imply aninvestigation of pulsation mechanisms to supplement the ?mechanism and convective blocking effect to drive hybrid pulsations.Accurate physical parameters for all stars are needed to confirm thesefindings.

Random forest automated supervised classification of Hipparcos periodic variable stars
We present an evaluation of the performance of an automatedclassification of the Hipparcos periodic variable stars into 26 types.The sub-sample with the most reliable variability types available in theliterature is used to train supervised algorithms to characterize thetype dependencies on a number of attributes. The most useful attributesevaluated with the random forest methodology include, in decreasingorder of importance, the period, the amplitude, the V-I colour index,the absolute magnitude, the residual around the folded light-curvemodel, the magnitude distribution skewness and the amplitude of thesecond harmonic of the Fourier series model relative to that of thefundamental frequency. Random forests and a multi-stage scheme involvingBayesian network and Gaussian mixture methods lead to statisticallyequivalent results. In standard 10-fold cross-validation (CV)experiments, the rate of correct classification is between 90 and 100per cent, depending on the variability type. The main mis-classificationcases, up to a rate of about 10 per cent, arise due to confusion betweenSPB and ACV blue variables and between eclipsing binaries, ellipsoidalvariables and other variability types. Our training set and thepredicted types for the other Hipparcos periodic stars are availableonline.

Cepheid investigations using the Kepler space telescope
We report results of initial work done on selected candidate Cepheids tobe observed with the Kepler space telescope. Prior to the launch, 40candidates were selected from previous surveys and data bases. Theanalysis of the first 322 d of Kepler photometry, and recentground-based follow-up multicolour photometry and spectroscopy allowedus to confirm that one of these stars, V1154 Cyg (KIC 7548061), isindeed a 4.9-d Cepheid. Using the phase lag method, we show that thisstar pulsates in the fundamental mode. New radial velocity data areconsistent with previous measurements, suggesting that a long-periodbinary component is unlikely. No evidence is seen in the ultraprecise,nearly uninterrupted Kepler photometry for non-radial or stochasticallyexcited modes at the micromagnitude level. The other candidates are notCepheids, but an interesting mix of possible spotted stars, eclipsingsystems and flare stars.

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids and interrelation of amplitudes
Context: The dependence of amplitude on the pulsation period differsfrom other Cepheid-related relationships. Aims: We attempt torevise the period-amplitude (P-A) relationship of Galactic Cepheidsbased on multi-colour photometric and radial velocity data. Reliable P-Agraphs for Galactic Cepheids constructed for the U, B, V, R_C, andIC photometric bands and pulsational radial velocityvariations facilitate investigations of previously poorly studiedinterrelations between observable amplitudes. The effects of bothbinarity and metallicity on the observed amplitude, and the dichotomybetween short- and long-period Cepheids can both be studied. Methods: A homogeneous data set was created that contains basicphysical and phenomenological properties of 369 Galactic Cepheids.Pulsation periods were revised and amplitudes were determined by theFourier method. P-A graphs were constructed and an upper envelope to thedata points was determined in each graph. Correlations between variousamplitudes and amplitude-related parameters were searched for, usingCepheids without known companions. Results: Large amplitudeCepheids with companions exhibit smaller photometric amplitudes onaverage than solitary ones, as expected, while s-Cepheids pulsate withan arbitrary (although small) amplitude. The ratio of the observedradial velocity to blue photometric amplitudes, AV_RAD/A_B,is not as good an indicator of the pulsation mode as predictedtheoretically. This may be caused by an incorrect mode assignment to anumber of small amplitude Cepheids, which are not necessarily firstovertone pulsators. The dependence of the pulsation amplitudes onwavelength is used to identify duplicity of Cepheids. More than twentystars previously classified as solitary Cepheids are now suspected tohave a companion. The ratio of photometric amplitudes observed invarious bands confirms the existence of a dichotomy among normalamplitude Cepheids. The limiting period separating short- andlong-period Cepheids is 10.47 days. Conclusions:Interdependences of pulsational amplitudes, the period dependence of theamplitude parameters, and the dichotomy have to be taken into account asconstraints in modelling the structure and pulsation of Cepheids.Studies of the P-L relationship must comply with the break at 10.47°instead of the currently used “convenient” value of 10 days.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/959

The All Sky Automated Survey. The Catalog of Variable Stars in the Kepler Field of View
We present the catalog of 947 variable stars located in the field ofview of the Kepler satellite. The catalog is a result of the analysis ofVI photometry obtained during the first 17-month observations in theASAS3-North station. The variable stars we present are divided intoeleven groups according to the presented variability; the groups arebriefly discussed. The catalog is intended to be a source of informationfor target selection process and follow-up programs.

Spectroscopic Study of Candidates for Kepler Asteroseismic Targets - Solar-Like Stars
We report spectroscopic observations of 23 candidates for Keplerasteroseismic targets and 10 other stars in the Kepler field. For allthese stars, we derive the radial velocities, effective temperature,surface gravity, metallicity, the projected rotational velocity, andestimate the MK type. HIP 97513 and HIP 92132 are classified assuspected new single-lined spectroscopic binaries. For 28 stars, theradial velocity is measured for the first time.

Reddenings of FGK supergiants and classical Cepheids from spectroscopic data
Accurate and homogeneous atmospheric parameters(Teff,logg,Vt, [Fe/H]) are derived for 74 FGKnon-variable supergiants from high-resolution, high signal-to-noiseratio, echelle spectra. Extremely high precision for the inferredeffective temperatures (10-40K) is achieved by using the line-depthratio method. The new data are combined with atmospheric values for 164classical Cepheids, observed at 675 different pulsation phases, takenfrom our previously published studies. The derived values are correlatedwith unreddened B - V colours compiled from the literature for theinvestigated stars in order to obtain an empirical relationship of theform (B - V)0 = 57.984 -10.3587(logTeff)2 +1.67572(logTeff)3 - 3.356logg +0.0321Vt + 0.2615[Fe/H] + 0.8833(logg)(logTeff).The expression is used to estimate colour excesses E(B - V) forindividual supergiants and classical Cepheids, with a precision of+/-0.05 mag for supergiants and Cepheids with n = 1-2 spectra, reaching+/-0.025mag for Cepheids with n > 2 spectra, matching uncertaintiesfor the most sophisticated photometric techniques. The reddening scaleis also a close match to the system of space reddenings for Cepheids.The application range is for spectral types F0-K0 and luminosity classesI and II.

Photoelectric observations of Cepheids in UBV(RI)c (Berdnikov, 2008)
This catalog gathers the observation of 894 Cepheids made between 1986to 2004.Observations are listed in alphabetical order of the constellations. Thestandard deviation for every magnitude and color is 0.01mag.This version supersedes the 1997 edition (Cat. )(3 data files).

Cepheid parallaxes and the Hubble constant
Revised Hipparcos parallaxes for classical Cepheids are analysedtogether with 10 Hubble Space Telescope (HST)-based parallaxes. In areddening-free V, I relation we find that the coefficient of logP is thesame within the uncertainties in our Galaxy as in the Large MagellanicCloud (LMC), contrary to some previous suggestions. Cepheids in theinner region of NGC4258 with near solar metallicities confirm thisresult. We obtain a zero-point for the reddening-free relation and applyit to the Cepheids in galaxies used by Sandage et al. to calibrate theabsolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubbleconstant. We revise their result for H0 from 62 to 70 +/-5kms-1Mpc-1. The Freedman et al. value is revisedfrom 72 to 76 +/- 8kms-1Mpc-1. These results areinsensitive to Cepheid metallicity corrections. The Cepheids in theinner region of NGC4258 yield a modulus of 29.22 +/- 0.03 (int.)compared with a maser-based modulus of 29.29 +/- 0.15. Distance modulifor the LMC, uncorrected for any metallicity effects, are 18.52 +/- 0.03from a reddening-free relation in V, I; 18.47 +/- 0.03 from aperiod-luminosity relation at K; 18.45 +/- 0.04 from aperiod-luminosity-colour relation in J, K. Adopting a metallicitycorrection in V, I from Macri et al. leads to a true LMC modulus of18.39 +/- 0.05.

Proper-motion binaries in the Hipparcos catalogue. Comparison with radial velocity data
Context: .This paper is the last in a series devoted to the analysis ofthe binary content of the Hipparcos Catalogue. Aims: .Thecomparison of the proper motions constructed from positions spanning ashort (Hipparcos) or long time (Tycho-2) makes it possible to uncoverbinaries with periods of the order of or somewhat larger than the shorttime span (in this case, the 3 yr duration of the Hipparcos mission),since the unrecognised orbital motion will then add to the propermotion. Methods: .A list of candidate proper motion binaries isconstructed from a carefully designed χ2 test evaluatingthe statistical significance of the difference between the Tycho-2 andHipparcos proper motions for 103 134 stars in common between the twocatalogues (excluding components of visual systems). Since similar listsof proper-motion binaries have already been constructed, the presentpaper focuses on the evaluation of the detection efficiency ofproper-motion binaries, using different kinds of control data (mostlyradial velocities). The detection rate for entries from the NinthCatalogue of Spectroscopic Binary Orbits (S_B^9) is evaluated, as wellas for stars like barium stars, which are known to be all binaries, andfinally for spectroscopic binaries identified from radial velocity datain the Geneva-Copenhagen survey of F and G dwarfs in the solarneighbourhood. Results: .Proper motion binaries are efficientlydetected for systems with parallaxes in excess of ~20 mas, and periodsin the range 1000-30 000 d. The shortest periods in this range(1000-2000 d, i.e., once to twice the duration of the Hipparcos mission)may appear only as DMSA/G binaries (accelerated proper motion in theHipparcos Double and Multiple System Annex). Proper motion binariesdetected among S_B9 systems having periods shorter than about400 d hint at triple systems, the proper-motion binary involving acomponent with a longer orbital period. A list of 19 candidate triplesystems is provided. Binaries suspected of having low-mass(brown-dwarf-like) companions are listed as well. Among the 37 bariumstars with parallaxes larger than 5 mas, only 7 exhibit no evidence forduplicity whatsoever (be it spectroscopic or astrometric). Finally, thefraction of proper-motion binaries shows no significant variation amongthe various (regular) spectral classes, when due account is taken forthe detection biases.Full Table [see full textsee full text] is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/464/377

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The Distribution of the Elements in the Galactic Disk
This paper reports on the spectroscopic investigation of 54 Cepheids,deriving parameters and abundances. These Cepheids extend previoussamples by about 35% in number and increase the amount of the Galacticdisk coverage, especially in the direction of l~120deg. Wefind that there exists in the Galactic disk at that longitude and at asolar distance of about 3-4 kpc a region that has enhanced abundances,~+0.2, with respect to the local region. A simple linearfit to all Cepheid data now extant yields a gradientd[Fe/H]/dRG=-0.068+/-0.003 dex kpc-1. Afterconsideration of the spatial abundance inhomogeneities in the sample, weconclude that the best current estimate of the overall gradient isd[Fe/H]/dRG=-0.06 dex kpc-1.

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

Two Period-Radius Relations for Classical Cepheids: Determining the Pulsation Mode and the Distance Scale
Not Available

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC
We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.

Détermination des rayons de Céphéides. V. Vitesses radiales et dimensions de 22 Céphéides galactiques. Determination of the radii of Cepheids V. Radial velocities and dimensions of 22 galactic Cepheids
We present radial velocity data for 22 galactic Cepheid stars obtainedwith Coravel spectrometer. Continuous observation over several years hasenabled us to obtain 852 individual velocities covering all the phasesof the pulsation. The mean number of measurements per star is 39,ranging from 20 to 113. For each star radial velocity versus phasediagrams have been fitted by analytical relation, and the stellar radiusvariation has been derived by integration of this relation over thewhole period. Using recent ubv photometry of the literature and velocitycurves, we have calculated the radii of the stars using a method basedon the Baade-Wesselink concept. For these 22 Cepheids we give a linearlogarithmic period-radius relation with a range of 2,4 to 45 days. Lesobservations ont été effectuées àl'Observatoire de Haute-Provence (CNRS). Le tableau 1 est disponibleseulement sous forme électronique au CDS via ftp àcdsarc.u-strasbg.fr (130.79.128.5) ou viahttp://cdsweb.u-strasbg.fr/Abstract.html

I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog
By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.

Monitoring Cepheid Period Changes From Saint Mary's University
CCD observations in blue light with the 0.4m telescope at Saint Mary'sUniversity are presented for the Cepheids SU Cyg, V402 Cyg, V1154 Cyg,V386 Cyg, V924 Cyg, MW Cyg, BB Her, GH Cyg, VY Cyg, TX Cyg, SZ Cyg, XCyg, CD Cyg, and CV Vul. The data are used to establish new times oflight maximum for the sample, and analyses of the new andpreviously-published O-C residuals are used to derive improved valuesfor the rates of period change for each program object. The new valuesagree closely with predictions from stellar evolutionary theory for therates at which intermediate-mass stars evolve through the Cepheidinstability strip, and provide an excellent means of establishing theinstability strip crossing mode for each variable.

A catalog of Cepheid radial velocities measured in 1995-1998 with the correlation spectrometer
We present a catalog of 2444 original radial-velocity measurements for108 Cepheids based on the 1995-1998 observations with the correlationspectrometer. Detailed radial-velocity curves are given for 12 Cepheidsfor the first time.

UVBY beta Photometric Data and Fourier Coefficients for Galactic Population I and Population II Cepheids
Photometric data in the uvby beta system are presented for a sample of98 Population I Cepheids and seven W Virginis or Population II Cepheids.The importance of the Fourier decomposition technique in the study ofthe structure of pulsating stars is stressed. Mean values and Fourierdecomposition coefficients for the V, b - y, m1, and c1 variations arecalculated. Also, mean values of H beta are provided. New times ofmaximum V light are reported for the majority of the stars in thesample. Significant shifts of the light and color curves were found insome Cepheids; these are explained by their period variations. Thesestars are highlighted in the text.

The radii of 62 classical Cepheids
Based on dense series of photoelectric observations and on ourradial-velocity measurements, we calculated the radii of 62 northernCepheids by Balona's method. We derived the following period-radiusrelation: log R = 1.23(+/-0.03) + 0.62(+/-0.03) log P. Our detailedanalysis shows that the distance scale for Cepheids cannot be refinedusing their radii by an independent method which is unrelated to thedistances to young open clusters because of the random and systematicerrors of the Baade-Wesselink technique.

Monitoring the Evolution of Cepheid Variables
Described here are preliminary results of a pilot project to monitorchanges in the ephemerides of northern hemisphere Cepheid's using anSBIG camera attached to the 0.4-m telescope of the campus obversatory atSaint Mary's University. Epochs of maximum light for fifteen Cepheid'shave been derived using published light curves for each variable astemplates, and the results are being used to update the O-C ephemeridesfor the program stars. Results for BB Her are presented here. Periodchanges for Cepheid variables are demonstrated to be an excellent meansof pinpointing their evolutionary status, as well as for investigatingother peculiarities of the class.

A catalog of Cepheid radial velocities measured in 1992-1995 with a correlation spectrometer
Not Available

Mean radial velocities and binarity of cepheids from the 1987-1995 measurements
Not Available

Rotation curve of the system of classical Cepheids and the distance to the galactic center
Not Available

Photoelectric observations of Cepheids in 1992
During August-September 1992, 1635 UBVR photometric observations for 74Cepheids were obtained with the 60-cm reflector of the Mt. MaidanakObservatory of the Tashkent Astronomical Institute. Tables ofobservations and plots of light curves are given. These observationstogether with previously published ones will be used to study the periodvariability of Cepheids and to determine their radii and light excesses.

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Cygnus
Ascensió Recta:19h48m15.46s
Declinació:+43°07'36.9"
Magnitud Aparent:9.182
Moviment propi RA:-3.5
Moviment propi Dec:-4.1
B-T magnitude:10.167
V-T magnitude:9.264

Catàlegs i designacions:
Noms Propis
TYCHO-2 2000TYC 3148-315-1
USNO-A2.0USNO-A2 1275-12348110
HIPHIP 97439

→ Sol·licitar més catàlegs i designacions de VizieR